Spaces:
Sleeping
Sleeping
File size: 8,989 Bytes
155354b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import argparse
import pandas as pd
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
# from numpy.random import seed
import random
import os
import pickle
import shap
import dill
from utils import encode_categorical, scale_numerical, NoPhysicsModels, unpickle_file
from alloy_data_preprocessing import add_physics_features
import tensorflow as tf
from tensorflow.keras import initializers
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_absolute_error, mean_absolute_percentage_error, r2_score
SEED = 42
def set_all_seeds(seed=SEED):
os.environ["PYTHONHASHSEED"] = str(seed)
tf.keras.utils.set_random_seed(seed)
np.random.seed(seed)
random.seed(seed)
def setup_model(num_outputs):
model = tf.keras.models.Sequential(
[
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(
8,
kernel_initializer=initializers.RandomNormal(stddev=0.00001), # Initially was at 0.01
bias_initializer=initializers.Zeros(),
activation="relu",
),
tf.keras.layers.Dense(
4,
activation="relu",
kernel_initializer=initializers.RandomNormal(stddev=0.00001), # Initially was at 0.01
bias_initializer=initializers.Zeros(),
),
tf.keras.layers.Dense(
num_outputs,
activation="relu",
kernel_initializer=initializers.RandomNormal(stddev=0.00001), # Initially was at 0.01
bias_initializer=initializers.Zeros(),
),
]
)
return model
def prepare_data(data, columns_num, columns_target, main_folder, data_type="path", seed=SEED):
# Create folder if doesn't exist
if not os.path.exists(main_folder):
os.makedirs(main_folder)
columns_numerical = columns_num.copy()
### Read data
print(data_type)
if data_type == "path":
df = pd.read_csv(data, sep=";")
else:
df = data.copy()
### Remove columns not used during training
X = df.drop(columns=columns_target)
y = df[columns_target]
# Remove the index columns (if coming from the sampling pipeline)
if "Index" in X.columns:
X.drop(columns=["Index"], inplace=True)
### Get categorical columns
columns_categorical = [column for column in X.columns if column not in columns_numerical]
# ### Remove target from column names
# for target in columns_target:
# columns_numerical.remove(target)
print("lllllllllllllllllllllllll")
print(X.columns)
### Encode variables into one-hot
X, one_hot_scaler = encode_categorical(X, columns_categorical)
X, minmax_scaler_inputs = scale_numerical(
X, [column for column in columns_numerical if column not in columns_target]
)
y, minmax_scaler_targets = scale_numerical(y, columns_target)
### Split data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=seed)
### Pickle data
with open(os.path.join(main_folder, f"X_test_data.pickle"), "wb+") as file:
pickle.dump(X_test, file)
with open(os.path.join(main_folder, f"y_test_data.pickle"), "wb+") as file:
pickle.dump(y_test, file)
with open(os.path.join(main_folder, f"one_hot_scaler.pickle"), "wb+") as file:
pickle.dump(one_hot_scaler, file)
with open(os.path.join(main_folder, f"minmax_scaler_inputs.pickle"), "wb+") as file:
pickle.dump(minmax_scaler_inputs, file)
with open(os.path.join(main_folder, f"minmax_scaler_targets.pickle"), "wb+") as file:
pickle.dump(minmax_scaler_targets, file)
return X_train, X_test, y_train, y_test
def train_model_ml(X_train, X_test, y_train, y_test, main_folder, model_path, seed=SEED):
set_all_seeds(seed)
model = RandomForestRegressor(random_state=seed)
model.fit(X_train, y_train)
y_hat = model.predict(X_test)
print("----------------")
print("Model performance")
print("MAE", mean_absolute_error(y_test, y_hat))
print("MAPE", mean_absolute_percentage_error(y_test, y_hat))
print("R2", r2_score(y_test, y_hat))
with open(os.path.join(main_folder, model_path), "wb+") as file:
pickle.dump(model, file)
return model
def train_model(
X_train, X_test, y_train, y_test, columns_target, main_folder, model_path, lr=0.01, seed=SEED, get_history=False
):
# Set all seeds from reproducibility
set_all_seeds(seed)
# Create folder if doesn't exist
if not os.path.exists(main_folder):
os.makedirs(main_folder)
## Setup model for training and training
model = setup_model(len(columns_target))
opt = tf.keras.optimizers.Adam(learning_rate=lr) # 0.01 for the hardness
print("learning rate", lr)
model.compile(optimizer=opt, loss="mean_squared_error")
validation_split = 0.1
history = model.fit(
X_train, y_train, batch_size=1, epochs=200, verbose=1, validation_data=(X_test, y_test), shuffle=True
) # 200 epochs initially
# raise Exception("Early stopping to test reproducibility")
model.save(os.path.join(main_folder, model_path))
model_core_name = model_path.split(".")[0]
with open(os.path.join(main_folder, f"{model_core_name}_fit_history.pickle"), "wb+") as file:
pickle.dump(history, file)
### Plot loss
plt.clf()
plt.plot(history.history["loss"])
plt.plot(history.history["val_loss"])
plt.title("model loss")
plt.ylabel("loss")
plt.xlabel("epoch")
plt.legend(["train", "test"], loc="upper left")
fig = plt.gcf()
plt.show()
fig.savefig(os.path.join(main_folder, "plot_loss_function.png"))
if get_history:
return model, history
return model
def save_shap_explainer(predict_fn, X_train, X_test, main_folder, explainer_name="explainer"):
# Create folder if doesn't exist
if not os.path.exists(main_folder):
os.makedirs(main_folder)
## Get explainer
ex = shap.KernelExplainer(predict_fn, X_train[:80])
shap_values = ex.shap_values(X_test[-20:])
fig, axes = plt.subplots(1, 2, figsize=(5, 5))
# need to check that it works in all cases (especially if size the X_test is 1)
if len(shap_values) == 1:
shap_values = shap_values[0]
plt.clf()
shap.summary_plot(shap_values, X_test[-20:], show=False)
fig = plt.gcf()
fig.savefig(os.path.join(main_folder, f"plot_shap_summary_{explainer_name}.png"))
plt.show()
with open(os.path.join(main_folder, f"{explainer_name}.bz2"), "wb") as file:
# pickle.dump(ex, file)
dill.dump(ex, file)
def compute_shap_explainer_no_physics(model_path, X_train, X_test, main_folder, scaler_inputs_path):
"""
Creates and save a shap explainer that do not include physics-informed features
To be shared with customers and put into the gradio
X_train and X_test must NOT be scaled
"""
scaler_inputs = unpickle_file(scaler_inputs_path)
if model_path.split(".")[-1] == "h5":
model = tf.keras.models.load_model(model_path)
else:
model = unpickle_file(model_path)
model_no_physics = NoPhysicsModels(model, scaler_inputs, add_physics_features)
save_shap_explainer(model_no_physics.predict, X_train, X_test, main_folder, explainer_name="exp_no_physics")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Process parameters")
parser.add_argument(
"--data_path",
type=str,
help="The path to your input data file",
default="preprocessed_data.csv",
required=False,
)
parser.add_argument(
"--main_folder", type=str, help="Folder to save model files", default="../models/hardness", required=False
)
parser.add_argument(
"--model_path", type=str, help="Path to save model", default="model_hardness.h5", required=False
)
parser.add_argument("--columns_target", type=str, help="List of target columns", default="H", required=False)
parser.add_argument(
"--columns_numerical",
type=str,
help="List of data columns with numeric values",
default="%A,%B,%C,%D,%E,%F,%Phase_A,%Phase_B,%Phase_C,%Phase_D,%Phase_E,%Phase_F,%A_Matrice,%B_Matrice,%C_Matrice,%D_Matrice,%E_Matrice,%F_Matrice,H,Temperature_C",
required=False,
)
args = parser.parse_args()
columns_numerical = args.columns_numerical.split(",") if args.columns_numerical else []
columns_target = args.columns_target.split(",") if args.columns_target else []
X_train, X_test, y_train, y_test = prepare_data(args.data_path, columns_numerical, columns_target, args.main_folder)
model = train_model(X_train, X_test, y_train, y_test, columns_target, args.main_folder, args.model_path)
save_shap_explainer(model.predict, X_train, X_test, args.main_folder)
|