Spaces:
Sleeping
Sleeping
File size: 8,729 Bytes
edf1058 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
""" Utils functions for preprocessing"""
import pandas as pd
from sklearn.preprocessing import OneHotEncoder, MinMaxScaler
import pickle
import tensorflow as tf
import numpy as np
def aggregate_transform_df(original_df, transformed_df, transformed_cols):
"""
Helper function to aggregate the columns transformed with the original dataset
"""
print(original_df.shape)
print(transformed_df.shape)
df_final = original_df.drop(columns=transformed_cols)
df_final = df_final.merge(transformed_df, left_index=True, right_index=True)
print(df_final.shape)
return df_final
def encode_categorical(df, categorical_cols, method="OneHot", encoder=None, fit=True):
"""
Returns the dataframe where the categorical columns have been replaced
according to the method selected
Right now only OneHot is supported
"""
print(f"Running {method} encoding")
if fit:
encoder = OneHotEncoder()
encoder.fit(df[categorical_cols])
array_transformed = encoder.transform(df[categorical_cols]).toarray()
df_encoded = pd.DataFrame(array_transformed, columns=encoder.get_feature_names_out(), index=df.index)
df_final = aggregate_transform_df(df, df_encoded, categorical_cols)
if fit:
return df_final, encoder
else:
return df_final
def scale_numerical(df, numerical_cols, method="MinMax", scaler=None, fit=True):
"""
Returns the dataframe where the numerical columns have been scaled
according to the method selected
Right now only MinMax is supported
"""
print(f"Running {method} scaling")
if fit:
scaler = MinMaxScaler()
scaler.fit(df[numerical_cols])
array_transformed = scaler.transform(df[numerical_cols])
df_transformed = pd.DataFrame(array_transformed, columns=numerical_cols, index=df.index)
df_final = aggregate_transform_df(df, df_transformed, numerical_cols)
if fit:
return df_final, scaler
else:
return df_final
def scale_numerical_w_missing(df, numerical_cols, scaler):
"""
Scale the dataframe when there are missing columns from the columns used to fit the scaler
"""
additional_cols = [c for c in numerical_cols if c not in df.columns]
df_w_cols = df.copy()
df_w_cols[additional_cols] = 0
df_w_cols_scaled = scale_numerical(df_w_cols, numerical_cols, scaler=scaler, fit=False)
df_scaled = df_w_cols_scaled.drop(columns=additional_cols)
return df_scaled
def fill_nans(df, cols, method="mean"):
df_filled = df.copy()
print(f"Fill nans in {cols} with the {method} method")
for col in cols:
if method == "mean":
df_filled[col] = df_filled[col].fillna(df[col].mean())
elif method == "mode":
df_filled[col] = df_filled[col].fillna(df[col].mode())
return df_filled
def encode_and_predict(
model_path,
data,
one_hot_scaler,
minmax_scaler_inputs,
minmax_scaler_targets,
categorical_columns,
numerical_columns,
target_columns,
explainer=None,
):
model = tf.keras.models.load_model(model_path)
data = encode_categorical(data, categorical_columns, encoder=one_hot_scaler, fit=False)
data = scale_numerical(data, numerical_columns, scaler=minmax_scaler_inputs, fit=False)
if explainer:
return model.predict(data), data.columns, explainer.shap_values(data[-10:])
else:
return model.predict(data)
class EnsembleModel:
"""
Class to store a list of models and to run predictions as the mean of those models
"""
def __init__(self, models_list, history_list, loss_threshold=0, scaler_targets=None) -> None:
"""
Initialized the Ensemble model and cleans the models that stayed stuck, or that didn't achieve a sufficient performance (if loss_threshold parameter is set)
By assumption the content of models_list are AI models that have a predict method
"""
self.models = []
self.models_history = []
self.loss_threshold = loss_threshold
for i, model in enumerate(models_list):
model_history = history_list[i]
if np.abs(min(model_history.history["loss"]) - max(model_history.history["loss"])) < 0.001:
print(f"Model {i} skipped due to loss getting stuck")
continue
if (self.loss_threshold > 0) and (model_history.history["loss"][-1] > self.loss_threshold):
print(f"Model {i} skipped due to performance")
continue
self.models.append(model)
self.models_history.append(model)
self.scaler_targets = scaler_targets
print(f"Ensemble model initialized with {len(self.models)} models")
def predict_list(self, data):
pred_list = [model.predict(data) for model in self.models]
if self.scaler_targets is not None:
pred_list = [self.scaler_targets.inverse_transform(pred) for pred in pred_list]
return pred_list
def predict_w_uncertainty(self, data, uncertainty_type="confidence_interval", model_bias=0.03):
"""
Returns the prediction and the confidence interval on the data
"""
# The prediction is the average of all predictions and the uncertainty is the variance of all predictions
# LB: not sure this works if multiple targets are predicted with the same model
n_models = len(self.models)
pred_mean, pred_list = self.predict(data, return_list=True)
pred_std = np.std(pred_list, axis=0)
training_average_dict = {
"%C": 0.587936,
"%Co": 0.306122,
"%Cr": 0,
"%V": 0,
"%Mo": 0,
"%W": 0.363942,
"Temperature_C": 0.387755,
}
eps = 0.1
if uncertainty_type == "confidence_interval":
print("Confidence interval")
# Confidence interval = mean +- z * std/sqrt(n)
z = 1.96 # 95%: 1.96, 90% 1.645
model_bias_vector = np.ones(pred_mean.shape) * model_bias * pred_mean
pred_uncertainty = z * (pred_std + model_bias_vector) / np.sqrt(n_models)
elif uncertainty_type == "std":
print("Standard deviation")
pred_uncertainty = pred_std.copy()
else:
print("Weighted uncertainty")
pred_uncertainty = pred_std.copy()
uncertainty_weights = np.ones((pred_std.shape[0],))
dist_df = pd.DataFrame()
for col in training_average_dict.keys():
print(training_average_dict[col])
dist_vector = (data[col] - training_average_dict[col]) ** 2
# dist_vector = np.abs(data[col] - training_average_dict[col])
# Quick fix for the constant elements that are not properly scaled
if col in ["%Cr", "%V", "%Mo"]:
dist_vector = dist_vector / 10
dist_df[col] = dist_vector
print(dist_vector)
uncertainty_weights = np.sqrt(dist_df.sum(axis=1)) + eps
pred_uncertainty = np.multiply(uncertainty_weights, pred_uncertainty[:, 0])
return pred_mean, pred_uncertainty
def predict(self, data, return_list=False):
"""
Returns only the prediction of the Ensemble models on the data
"""
pred_list = self.predict_list(data)
preds = np.mean(pred_list, axis=0)
if return_list:
return preds, pred_list
return preds
def unpickle_file(path):
with open(path, "rb") as file:
unpickler = pickle.Unpickler(file)
unpickled_file = unpickler.load()
return unpickled_file
def read_data(data_path, sep=","):
"""
Opens the file based on the extension
"""
file_extension = data_path.split(".")[-1]
if file_extension == "csv":
return pd.read_csv(data_path, sep=sep)
elif file_extension in ["xls", "xlsx"]:
return pd.read_excel(data_path)
else:
return unpickle_file(data_path)
class NoPhysicsModels:
"""
Class to hide the physics-informed features to be able to run the shap interpreter on it
"""
def __init__(self, model, scaler_inputs=None, preprocessing_physics_fn=None):
self.model = model
self.scaler_inputs = scaler_inputs
self.physics_fn = preprocessing_physics_fn
def predict(self, x):
x_w_p = self.physics_fn(x)
x_w_p_for_scaling = x_w_p[self.scaler_inputs.feature_names_in_]
x_w_p_scaled = scale_numerical(
x_w_p_for_scaling, self.scaler_inputs.feature_names_in_, scaler=self.scaler_inputs, fit=False
)
return self.model.predict(x_w_p_scaled)
|