File size: 7,684 Bytes
82aacbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import csv
import gradio as gr
import tensorflow as tf
import numpy as np
import pandas as pd
from datetime import datetime
import utils
from huggingface_hub import Repository
import itertools

# Unique phase elements

# Load access tokens
WRITE_TOKEN = os.environ.get("WRITE_PER") # write

# Logs repo path
dataset_url = "https://huggingface.co/datasets/sandl/upload_alloy_hardness"
dataset_path = "logs_alloy_hardness.csv"

scaling_factors = {'PROPERTY: Calculated Density (g/cm$^3$)': (2.7, 13.7),
                   'PROPERTY: Calculated Young modulus (GPa)': (66, 336),
                   'PROPERTY: HV': (94.7, 1183.0)}

input_mapping = {'PROPERTY: BCC/FCC/other': {'BCC': 0, 'FCC': 1, 'OTHER': 2},# 'nan': 2},
                 'PROPERTY: Processing method': {'ANNEAL': 0, 'CAST': 1, 'OTHER': 2, 'POWDER': 3, 'WROUGHT': 4},# 'nan': 2},
                 'PROPERTY: Microstructure': {'B2': 0, 'B2+BCC': 1, 'B2+Sec.': 2, 'BCC': 3, 'BCC+B2': 4, 'BCC+B2+Laves': 5,
                                              'BCC+B2+Sec.': 6, 'BCC+BCC': 7, 'BCC+BCC+HCP': 8, 'BCC+BCC+Laves(C15)': 9,
                                              'BCC+FCC': 10, 'BCC+HCP': 11, 'BCC+Laves': 12, 'BCC+Laves(C14)': 13,
                                              'BCC+Laves(C15)': 14, 'BCC+Laves+Sec.': 15, 'BCC+Sec.': 16, 'FCC': 17,
                                              'FCC+B2': 18, 'FCC+B2+Sec.': 19, 'FCC+BCC': 20, 'FCC+BCC+B2': 21, 'FCC+BCC+B2+Sec.': 22,
                                              'FCC+BCC+Sec.': 23, 'FCC+FCC': 24, 'FCC+HCP': 25, 'FCC+L12': 26, 'FCC+L12+Sec.': 27,
                                              'FCC+Sec.': 28, 'OTHER': 29}, #'nan': 29},
                 'PROPERTY: Single/Multiphase': {'M': 0, 'S': 1, 'OTHER': 3}} #'nan': 3, 

unique_phase_elements = ['B2', 'BCC', 'FCC', 'HCP', 'L12', 'Laves', 'Laves(C14)', 'Laves(C15)', 'Sec.', 'OTHER']

input_cols = {
    "PROPERTY: Alloy formula": "(PROPERTY: Alloy formula) "
                               "Enter alloy formula using proportions representation (i.e. Al0.25 Co1 Fe1 Ni1)",
    "PROPERTY: Single/Multiphase": "(PROPERTY: Single/Multiphase) "
                                   "Choose between Single (S), Multiphase (M) and other (OTHER)",
    "PROPERTY: BCC/FCC/other": "(PROPERTY: BCC/FCC/other) "
                               "Choose between BCC, FCC and other ",
    "PROPERTY: Processing method": "(PROPERTY: Processing method) "
                                   "Choose your processing method (ANNEAL, CAST, POWDER, WROUGHT or OTHER)",
    "PROPERTY: Microstructure": "(PROPERTY: Microstructure) "
                                "Choose the microstructure (SEC means the secondary/tertiary microstructure is not one of FCC, BCC, HCP, L12, B2, Laves, Laves (C14), Laves (C15))",
}

def process_microstructure(list_phases):
    permutations = list(itertools.permutations(list_phases))
    permutations_strings = [str('+'.join(list(e))) for e in permutations]
    for e in permutations_strings:
        if e in list(input_mapping['PROPERTY: Microstructure'].keys()):
            return e
    return 'OTHER'
    
def write_logs(message, message_type="Prediction"):
    """
    Write logs
    """
    with Repository(local_dir="data", clone_from=dataset_url, use_auth_token=WRITE_TOKEN).commit(commit_message="from private", blocking=False):
        with open(dataset_path, "a") as csvfile:
                writer = csv.DictWriter(csvfile, fieldnames=["name", "message", "time"])
                writer.writerow(
                    {"name": message_type, "message": message, "time": str(datetime.now())}
                )
    return 
    
def predict(x, request: gr.Request):
    """
    Predict the hardness using the ML model. Input data is a dataframe
    """
    loaded_model = tf.keras.models.load_model("hardness.h5")
    x = x.replace("", 0)
    x = np.asarray(x).astype("float32")
    y = loaded_model.predict(x)[0][0]
    minimum, maximum = scaling_factors['PROPERTY: HV']
    print("Prediction is ", y)
    if request is not None:   # Verify if request is not None (when building the app the first request is None)
        message = f"{request.username}_{request.client.host}"
        print("MESSAGE")
        print(message)
        res = write_logs(message)
    interpret_fig = utils.interpret(x)
    return round(y*(maximum-minimum)+minimum, 2), 12, interpret_fig


def predict_from_tuple(in1, in2, in3, in4, in5, request: gr.Request):
    """
    Predict the hardness using the ML model. Input data is a tuple. Input order should be the same as the cols list
    """
    input_tuple = (in1, in2, in3, in4, in5)
    formula = utils.normalize_and_alphabetize_formula(in1)
    density = utils.calculate_density(formula)
    young_modulus = utils.calculate_youngs_modulus(formula)
    input_dict = {}

    in2 = input_mapping['PROPERTY: Single/Multiphase'][str(in2)]
    input_dict['PROPERTY: Single/Multiphase'] = [int(in2)]
    
    in3 = input_mapping['PROPERTY: BCC/FCC/other'][str(in3)]
    input_dict['PROPERTY: BCC/FCC/other'] = [int(in3)]
    
    in4 = input_mapping['PROPERTY: Processing method'][str(in4)]
    input_dict['PROPERTY: Processing method'] = [int(in4)]

    in5 = process_microstructure(in5)
    in5 = input_mapping['PROPERTY: Microstructure'][in5]
    input_dict['PROPERTY: Microstructure'] = [int(in5)]
    
    density_scaling_factors = scaling_factors['PROPERTY: Calculated Density (g/cm$^3$)']
    density = (density-density_scaling_factors[0])/(
        density_scaling_factors[1]-density_scaling_factors[0])
    input_dict['PROPERTY: Calculated Density (g/cm$^3$)'] = [float(density)]

    
    ym_scaling_factors = scaling_factors['PROPERTY: Calculated Young modulus (GPa)']
    young_modulus = (young_modulus-ym_scaling_factors[0])/(
        ym_scaling_factors[1]-ym_scaling_factors[0])
    input_dict['PROPERTY: Calculated Young modulus (GPa)'] = [float(young_modulus)]

    input_df = pd.DataFrame.from_dict(input_dict)
    one_hot = utils.turn_into_one_hot(input_df, input_mapping)
    print(one_hot.columns)
    return predict(one_hot, request)


input_formula = gr.Textbox(
    lines=1, placeholder=input_cols["PROPERTY: Alloy formula"], label=input_cols["PROPERTY: Alloy formula"]
)
input_phase = gr.Dropdown(
    choices=list(input_mapping["PROPERTY: Single/Multiphase"].keys()),
    label=input_cols["PROPERTY: Single/Multiphase"],
)
input_bccfcc = gr.Dropdown(
    choices=list(input_mapping["PROPERTY: BCC/FCC/other"].keys()),
    label=input_cols["PROPERTY: BCC/FCC/other"],
)
input_processing = gr.Dropdown(
    choices=list(input_mapping["PROPERTY: Processing method"].keys()),
    label=input_cols["PROPERTY: Processing method"],
)
input_microstructure = gr.CheckboxGroup(
    choices=unique_phase_elements, #list(input_mapping["PROPERTY: Microstructure"].keys()),
    label=input_cols["PROPERTY: Microstructure"],
)
input_list = [input_formula, input_phase, input_bccfcc, input_processing, input_microstructure]


examples_inputs = ['Al0.25 Co1 Fe1 Ni1', 'S', 'BCC', 'CAST', ['B2', 'BCC']]

# Version where input is a DataFrame
# demo = gr.Interface(fn=predict,
#                     inputs=gr.DataFrame(headers=cols),
#                     outputs=gr.Text(label="Hardness (in HV)"))


demo = gr.Interface(
    fn=predict_from_tuple,
    inputs=input_list,
    outputs=[gr.Text(label="Hardness (in HV)"), gr.Text(label="Uncertainty (%)"), gr.Plot(label="Interpretation")],
    title="Predict your alloy's hardness",
    description="This AI model provides the estimation of hardness based on the input alloy description",
    examples=[examples_inputs],
)



if __name__ == "__main__":
    demo.launch(show_error=True)