design_space / app_not_clean.py
bndl's picture
Create app_not_clean.py
82aacbc
import os
import csv
import gradio as gr
import tensorflow as tf
import numpy as np
import pandas as pd
from datetime import datetime
import utils
from huggingface_hub import Repository
import itertools
# Unique phase elements
# Load access tokens
WRITE_TOKEN = os.environ.get("WRITE_PER") # write
# Logs repo path
dataset_url = "https://huggingface.co/datasets/sandl/upload_alloy_hardness"
dataset_path = "logs_alloy_hardness.csv"
scaling_factors = {'PROPERTY: Calculated Density (g/cm$^3$)': (2.7, 13.7),
'PROPERTY: Calculated Young modulus (GPa)': (66, 336),
'PROPERTY: HV': (94.7, 1183.0)}
input_mapping = {'PROPERTY: BCC/FCC/other': {'BCC': 0, 'FCC': 1, 'OTHER': 2},# 'nan': 2},
'PROPERTY: Processing method': {'ANNEAL': 0, 'CAST': 1, 'OTHER': 2, 'POWDER': 3, 'WROUGHT': 4},# 'nan': 2},
'PROPERTY: Microstructure': {'B2': 0, 'B2+BCC': 1, 'B2+Sec.': 2, 'BCC': 3, 'BCC+B2': 4, 'BCC+B2+Laves': 5,
'BCC+B2+Sec.': 6, 'BCC+BCC': 7, 'BCC+BCC+HCP': 8, 'BCC+BCC+Laves(C15)': 9,
'BCC+FCC': 10, 'BCC+HCP': 11, 'BCC+Laves': 12, 'BCC+Laves(C14)': 13,
'BCC+Laves(C15)': 14, 'BCC+Laves+Sec.': 15, 'BCC+Sec.': 16, 'FCC': 17,
'FCC+B2': 18, 'FCC+B2+Sec.': 19, 'FCC+BCC': 20, 'FCC+BCC+B2': 21, 'FCC+BCC+B2+Sec.': 22,
'FCC+BCC+Sec.': 23, 'FCC+FCC': 24, 'FCC+HCP': 25, 'FCC+L12': 26, 'FCC+L12+Sec.': 27,
'FCC+Sec.': 28, 'OTHER': 29}, #'nan': 29},
'PROPERTY: Single/Multiphase': {'M': 0, 'S': 1, 'OTHER': 3}} #'nan': 3,
unique_phase_elements = ['B2', 'BCC', 'FCC', 'HCP', 'L12', 'Laves', 'Laves(C14)', 'Laves(C15)', 'Sec.', 'OTHER']
input_cols = {
"PROPERTY: Alloy formula": "(PROPERTY: Alloy formula) "
"Enter alloy formula using proportions representation (i.e. Al0.25 Co1 Fe1 Ni1)",
"PROPERTY: Single/Multiphase": "(PROPERTY: Single/Multiphase) "
"Choose between Single (S), Multiphase (M) and other (OTHER)",
"PROPERTY: BCC/FCC/other": "(PROPERTY: BCC/FCC/other) "
"Choose between BCC, FCC and other ",
"PROPERTY: Processing method": "(PROPERTY: Processing method) "
"Choose your processing method (ANNEAL, CAST, POWDER, WROUGHT or OTHER)",
"PROPERTY: Microstructure": "(PROPERTY: Microstructure) "
"Choose the microstructure (SEC means the secondary/tertiary microstructure is not one of FCC, BCC, HCP, L12, B2, Laves, Laves (C14), Laves (C15))",
}
def process_microstructure(list_phases):
permutations = list(itertools.permutations(list_phases))
permutations_strings = [str('+'.join(list(e))) for e in permutations]
for e in permutations_strings:
if e in list(input_mapping['PROPERTY: Microstructure'].keys()):
return e
return 'OTHER'
def write_logs(message, message_type="Prediction"):
"""
Write logs
"""
with Repository(local_dir="data", clone_from=dataset_url, use_auth_token=WRITE_TOKEN).commit(commit_message="from private", blocking=False):
with open(dataset_path, "a") as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=["name", "message", "time"])
writer.writerow(
{"name": message_type, "message": message, "time": str(datetime.now())}
)
return
def predict(x, request: gr.Request):
"""
Predict the hardness using the ML model. Input data is a dataframe
"""
loaded_model = tf.keras.models.load_model("hardness.h5")
x = x.replace("", 0)
x = np.asarray(x).astype("float32")
y = loaded_model.predict(x)[0][0]
minimum, maximum = scaling_factors['PROPERTY: HV']
print("Prediction is ", y)
if request is not None: # Verify if request is not None (when building the app the first request is None)
message = f"{request.username}_{request.client.host}"
print("MESSAGE")
print(message)
res = write_logs(message)
interpret_fig = utils.interpret(x)
return round(y*(maximum-minimum)+minimum, 2), 12, interpret_fig
def predict_from_tuple(in1, in2, in3, in4, in5, request: gr.Request):
"""
Predict the hardness using the ML model. Input data is a tuple. Input order should be the same as the cols list
"""
input_tuple = (in1, in2, in3, in4, in5)
formula = utils.normalize_and_alphabetize_formula(in1)
density = utils.calculate_density(formula)
young_modulus = utils.calculate_youngs_modulus(formula)
input_dict = {}
in2 = input_mapping['PROPERTY: Single/Multiphase'][str(in2)]
input_dict['PROPERTY: Single/Multiphase'] = [int(in2)]
in3 = input_mapping['PROPERTY: BCC/FCC/other'][str(in3)]
input_dict['PROPERTY: BCC/FCC/other'] = [int(in3)]
in4 = input_mapping['PROPERTY: Processing method'][str(in4)]
input_dict['PROPERTY: Processing method'] = [int(in4)]
in5 = process_microstructure(in5)
in5 = input_mapping['PROPERTY: Microstructure'][in5]
input_dict['PROPERTY: Microstructure'] = [int(in5)]
density_scaling_factors = scaling_factors['PROPERTY: Calculated Density (g/cm$^3$)']
density = (density-density_scaling_factors[0])/(
density_scaling_factors[1]-density_scaling_factors[0])
input_dict['PROPERTY: Calculated Density (g/cm$^3$)'] = [float(density)]
ym_scaling_factors = scaling_factors['PROPERTY: Calculated Young modulus (GPa)']
young_modulus = (young_modulus-ym_scaling_factors[0])/(
ym_scaling_factors[1]-ym_scaling_factors[0])
input_dict['PROPERTY: Calculated Young modulus (GPa)'] = [float(young_modulus)]
input_df = pd.DataFrame.from_dict(input_dict)
one_hot = utils.turn_into_one_hot(input_df, input_mapping)
print(one_hot.columns)
return predict(one_hot, request)
input_formula = gr.Textbox(
lines=1, placeholder=input_cols["PROPERTY: Alloy formula"], label=input_cols["PROPERTY: Alloy formula"]
)
input_phase = gr.Dropdown(
choices=list(input_mapping["PROPERTY: Single/Multiphase"].keys()),
label=input_cols["PROPERTY: Single/Multiphase"],
)
input_bccfcc = gr.Dropdown(
choices=list(input_mapping["PROPERTY: BCC/FCC/other"].keys()),
label=input_cols["PROPERTY: BCC/FCC/other"],
)
input_processing = gr.Dropdown(
choices=list(input_mapping["PROPERTY: Processing method"].keys()),
label=input_cols["PROPERTY: Processing method"],
)
input_microstructure = gr.CheckboxGroup(
choices=unique_phase_elements, #list(input_mapping["PROPERTY: Microstructure"].keys()),
label=input_cols["PROPERTY: Microstructure"],
)
input_list = [input_formula, input_phase, input_bccfcc, input_processing, input_microstructure]
examples_inputs = ['Al0.25 Co1 Fe1 Ni1', 'S', 'BCC', 'CAST', ['B2', 'BCC']]
# Version where input is a DataFrame
# demo = gr.Interface(fn=predict,
# inputs=gr.DataFrame(headers=cols),
# outputs=gr.Text(label="Hardness (in HV)"))
demo = gr.Interface(
fn=predict_from_tuple,
inputs=input_list,
outputs=[gr.Text(label="Hardness (in HV)"), gr.Text(label="Uncertainty (%)"), gr.Plot(label="Interpretation")],
title="Predict your alloy's hardness",
description="This AI model provides the estimation of hardness based on the input alloy description",
examples=[examples_inputs],
)
if __name__ == "__main__":
demo.launch(show_error=True)