bndl commited on
Commit
13b0261
·
1 Parent(s): 82aacbc

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +325 -0
app.py ADDED
@@ -0,0 +1,325 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import csv
3
+ import gradio as gr
4
+ import tensorflow as tf
5
+ import numpy as np
6
+ import pandas as pd
7
+ from datetime import datetime
8
+ import utils
9
+ from huggingface_hub import Repository
10
+ import itertools
11
+ import time
12
+ import cv2
13
+
14
+ # Unique phase elements
15
+
16
+ # Load access tokens
17
+ WRITE_TOKEN = os.environ.get("WRITE_PER") # write
18
+
19
+ # Logs repo path
20
+ dataset_url = "https://huggingface.co/datasets/sandl/upload_alloy_hardness"
21
+ dataset_path = "logs_alloy_hardness.csv"
22
+
23
+ scaling_factors = {'PROPERTY: Calculated Density (g/cm$^3$)': (5.5, 13.7),
24
+ 'PROPERTY: Calculated Young modulus (GPa)': (77.0, 336.0),
25
+ 'PROPERTY: HV': (107.0, 1183.0),
26
+ 'PROPERTY: YS (MPa)': (62.0, 3416.0)}
27
+
28
+ input_mapping = {'PROPERTY: BCC/FCC/other': {'BCC': 0, 'FCC': 1, 'OTHER': 2},#, 'nan': 2},
29
+ 'PROPERTY: Processing method': {'ANNEAL': 0, 'CAST': 1, 'OTHER': 2, 'POWDER': 3, 'WROUGHT': 4},#, 'nan': 2},
30
+ 'PROPERTY: Microstructure': {'B2': 0, 'B2+BCC': 1, 'B2+L12': 2, 'B2+Laves+Sec.': 3, 'B2+Sec.': 4, 'BCC': 5,
31
+ 'BCC+B2': 6, 'BCC+B2+FCC': 7, 'BCC+B2+FCC+Sec.': 8, 'BCC+B2+L12': 9, 'BCC+B2+Laves': 10,
32
+ 'BCC+B2+Sec.': 11, 'BCC+BCC': 12, 'BCC+BCC+HCP': 13, 'BCC+BCC+Laves': 14,
33
+ 'BCC+BCC+Laves(C14)': 15, 'BCC+BCC+Laves(C15)': 16, 'BCC+FCC': 17, 'BCC+HCP': 18,
34
+ 'BCC+Laves': 19, 'BCC+Laves(C14)': 20, 'BCC+Laves(C15)': 21, 'BCC+Laves+Sec.': 22,
35
+ 'BCC+Sec.': 23, 'FCC': 24, 'FCC+B2': 25, 'FCC+B2+Sec.': 26, 'FCC+BCC': 27,
36
+ 'FCC+BCC+B2': 28, 'FCC+BCC+B2+Sec.': 29, 'FCC+BCC+BCC': 30, 'FCC+BCC+Sec.': 31,
37
+ 'FCC+FCC': 32, 'FCC+HCP': 33, 'FCC+HCP+Sec.': 34, 'FCC+L12': 35, 'FCC+L12+B2': 36,
38
+ 'FCC+L12+Sec.': 37, 'FCC+Laves': 38, 'FCC+Laves(C14)': 39, 'FCC+Laves+Sec.': 40,
39
+ 'FCC+Sec.': 41, 'L12+B2': 42, 'Laves(C14)+Sec.': 43, 'OTHER': 44},#, 'nan': 44},
40
+ 'PROPERTY: Single/Multiphase': {'': 0, 'M': 1, 'S': 2, 'OTHER': 3}}#, 'nan': 3}}
41
+
42
+ unique_phase_elements = ['B2', 'BCC', 'FCC', 'HCP', 'L12', 'Laves', 'Laves(C14)', 'Laves(C15)', 'Sec.', 'OTHER']
43
+
44
+ input_cols = {
45
+ "PROPERTY: Alloy formula": "(PROPERTY: Alloy formula) "
46
+ "Enter alloy formula using proportions representation (i.e. Al0.25 Co1 Fe1 Ni1)",
47
+ "PROPERTY: Single/Multiphase": "(PROPERTY: Single/Multiphase) "
48
+ "Choose between Single (S), Multiphase (M) and other (OTHER)",
49
+ "PROPERTY: BCC/FCC/other": "(PROPERTY: BCC/FCC/other) "
50
+ "Choose between BCC, FCC and other ",
51
+ "PROPERTY: Processing method": "(PROPERTY: Processing method) "
52
+ "Choose your processing method (ANNEAL, CAST, POWDER, WROUGHT or OTHER)",
53
+ "PROPERTY: Microstructure": "(PROPERTY: Microstructure) "
54
+ "Choose the microstructure (SEC means the secondary/tertiary microstructure is not one of FCC, BCC, HCP, L12, B2, Laves, Laves (C14), Laves (C15))",
55
+ }
56
+
57
+ def process_microstructure(list_phases):
58
+ permutations = list(itertools.permutations(list_phases))
59
+ permutations_strings = [str('+'.join(list(e))) for e in permutations]
60
+ for e in permutations_strings:
61
+ if e in list(input_mapping['PROPERTY: Microstructure'].keys()):
62
+ return e
63
+ return 'OTHER'
64
+
65
+ def write_logs(message, message_type="Prediction"):
66
+ """
67
+ Write logs
68
+ """
69
+ with Repository(local_dir="data", clone_from=dataset_url, use_auth_token=WRITE_TOKEN).commit(commit_message="from private", blocking=False):
70
+ with open(dataset_path, "a") as csvfile:
71
+ writer = csv.DictWriter(csvfile, fieldnames=["name", "message", "time"])
72
+ writer.writerow(
73
+ {"name": message_type, "message": message, "time": str(datetime.now())}
74
+ )
75
+ return
76
+
77
+ def predict(x, request: gr.Request):
78
+ """
79
+ Predict the hardness and yield strength using the ML model. Input data is a dataframe
80
+ """
81
+ loaded_model = tf.keras.models.load_model("hardness.h5")
82
+ print("summary is", loaded_model.summary())
83
+ x = x.replace("", 0)
84
+ x = np.asarray(x).astype("float32")
85
+ y = loaded_model.predict(x)
86
+ y_hardness = y[0][0]
87
+ y_ys = y[0][1]
88
+ minimum_hardness, maximum_hardness = scaling_factors['PROPERTY: HV']
89
+ minimum_ys, maximum_ys = scaling_factors['PROPERTY: YS (MPa)']
90
+ print("Prediction is ", y)
91
+ if request is not None: # Verify if request is not None (when building the app the first request is None)
92
+ message = f"{request.username}_{request.client.host}"
93
+ print("MESSAGE")
94
+ print(message)
95
+ res = write_logs(message)
96
+ interpret_fig = utils.interpret(x)
97
+ return (round(y_hardness*(maximum_hardness-minimum_hardness)+minimum_hardness, 2), 12,
98
+ round(y_ys*(maximum_ys-minimum_ys)+minimum_ys, 2), 4.8, interpret_fig)
99
+
100
+
101
+ def predict_from_tuple(in1, in2, in3, in4, in5, request: gr.Request):
102
+ """
103
+ Predict the hardness using the ML model. Input data is a tuple. Input order should be the same as the cols list
104
+ """
105
+ input_tuple = (in1, in2, in3, in4, in5)
106
+ formula = utils.normalize_and_alphabetize_formula(in1)
107
+ density = utils.calculate_density(formula)
108
+ young_modulus = utils.calculate_youngs_modulus(formula)
109
+ input_dict = {}
110
+
111
+ in2 = input_mapping['PROPERTY: Single/Multiphase'][str(in2)]
112
+ input_dict['PROPERTY: Single/Multiphase'] = [int(in2)]
113
+
114
+ in3 = input_mapping['PROPERTY: BCC/FCC/other'][str(in3)]
115
+ input_dict['PROPERTY: BCC/FCC/other'] = [int(in3)]
116
+
117
+ in4 = input_mapping['PROPERTY: Processing method'][str(in4)]
118
+ input_dict['PROPERTY: Processing method'] = [int(in4)]
119
+
120
+ in5 = process_microstructure(in5)
121
+ in5 = input_mapping['PROPERTY: Microstructure'][in5]
122
+ input_dict['PROPERTY: Microstructure'] = [int(in5)]
123
+
124
+ density_scaling_factors = scaling_factors['PROPERTY: Calculated Density (g/cm$^3$)']
125
+ density = (density-density_scaling_factors[0])/(
126
+ density_scaling_factors[1]-density_scaling_factors[0])
127
+ input_dict['PROPERTY: Calculated Density (g/cm$^3$)'] = [float(density)]
128
+
129
+
130
+ ym_scaling_factors = scaling_factors['PROPERTY: Calculated Young modulus (GPa)']
131
+ young_modulus = (young_modulus-ym_scaling_factors[0])/(
132
+ ym_scaling_factors[1]-ym_scaling_factors[0])
133
+ input_dict['PROPERTY: Calculated Young modulus (GPa)'] = [float(young_modulus)]
134
+
135
+ input_df = pd.DataFrame.from_dict(input_dict)
136
+ one_hot = utils.turn_into_one_hot(input_df, input_mapping)
137
+ print("One hot columns are ", one_hot.columns)
138
+ return predict(one_hot, request)
139
+
140
+
141
+ def upload_csv(x):
142
+ print(x)
143
+ print(x.name)
144
+ df = pd.read_csv(x.name, sep=",")
145
+ print("Input dataframe")
146
+ print(df.shape)
147
+ cols = list(df.columns)
148
+ return df, gr.update(choices=cols)
149
+
150
+
151
+ def train_model(x, target_cols):
152
+ print("Selected target columns")
153
+ print(target_cols)
154
+ time.sleep(6)
155
+ performance_plot = cv2.imread("model_performance.png")
156
+ metrics = pd.DataFrame([[0.09, 0.017]], columns=["RMSE", "Loss"])
157
+ return "Model successfully adapted to your data!", performance_plot, metrics
158
+
159
+
160
+
161
+
162
+ example_inputs = ['Al0.25 Co1 Fe1 Ni1', 'S', 'BCC', 'CAST', ['B2', 'Sec.']]
163
+
164
+ css_styling = """#submit {background: #1eccd8}
165
+ #submit:hover {background: #a2f1f6}
166
+ .output-image, .input-image, .image-preview {height: 250px !important}
167
+ .output-plot {height: 250px !important}"""
168
+
169
+ light_theme_colors = gr.themes.Color(c50="#e4f3fa", # Dataframe background cell content - light mode only
170
+ c100="#e4f3fa", # Top corner of clear button in light mode + markdown text in dark mode
171
+ c200="#a1c6db", # Component borders
172
+ c300="#FFFFFF", #
173
+ c400="#e4f3fa", # Footer text
174
+ c500="#0c1538", # Text of component headers in light mode only
175
+ c600="#a1c6db", # Top corner of button in dark mode
176
+ c700="#475383", # Button text in light mode + component borders in dark mode
177
+ c800="#0c1538", # Markdown text in light mode
178
+ c900="#a1c6db", # Background of dataframe - dark mode
179
+ c950="#0c1538") # Background in dark mode only
180
+ # secondary color used for highlight box content when typing in light mode, and download option in dark mode
181
+ # primary color used for login button in dark mode
182
+ osium_theme = gr.themes.Default(primary_hue="cyan", secondary_hue="cyan", neutral_hue=light_theme_colors)
183
+ page_title = "Alloys' hardness and yield strength prediction"
184
+ favicon_path = "osiumai_favicon.ico"
185
+ logo_path = "osiumai_logo.jpg"
186
+ html = f"""<html> <link rel="icon" type="image/x-icon" href="file={favicon_path}">
187
+ <img src='file={logo_path}' alt='Osium AI logo' width='200' height='100'> </html>"""
188
+
189
+
190
+ with gr.Blocks(css=css_styling, title=page_title, theme=osium_theme) as demo:
191
+ #gr.HTML(html)
192
+ gr.Markdown("# <p style='text-align: center;'>Predict your alloy's hardness and yield strength</p>")
193
+ gr.Markdown("This AI model provides the estimation of hardness and yield strength based on the input alloy description")
194
+ with gr.Tab(label="Model adaptation"):
195
+ with gr.Row():
196
+ with gr.Column():
197
+ gr.Markdown("### Your input files")
198
+ input_file = gr.File(label="Your input files", file_count="single", elem_id="input_files")
199
+ with gr.Row():
200
+ clear_train_button = gr.Button("Clear")
201
+ # upload_button = gr.Button("Upload", elem_id="submit")
202
+ train_button = gr.Button("Train model", elem_id="submit")
203
+ with gr.Row():
204
+ with gr.Column():
205
+ gr.Markdown("### Your input csv")
206
+ # input_image1 = gr.Image(elem_classes="input-csv")
207
+ input_csv = gr.DataFrame(elem_classes="input-csv")
208
+ with gr.Column():
209
+ gr.Markdown("### Choose your target properties")
210
+ target_columns = gr.CheckboxGroup(choices=[], interactive=True, label="Target alloy properties")
211
+
212
+ with gr.Column():
213
+ gr.Markdown("### Your model adaptation")
214
+ output_text = gr.Textbox(label="Training results")
215
+ output_plot = gr.Image(label="Training performance", elem_classes="output-image")
216
+ output_performance = gr.DataFrame(label="Model performance")
217
+
218
+ with gr.Tab(label="Run your model"):
219
+ with gr.Row():
220
+ clear_button = gr.Button("Clear")
221
+ prediction_button = gr.Button("Predict", elem_id="submit")
222
+ with gr.Row():
223
+ with gr.Column(scale=0.25, min_width=80):
224
+ gr.Markdown("### Your alloy's characteristics")
225
+ input_formula = gr.Textbox(
226
+ lines=2, placeholder=input_cols["PROPERTY: Alloy formula"], label=input_cols["PROPERTY: Alloy formula"]
227
+ )
228
+ input_phase = gr.Dropdown(
229
+ choices=list(input_mapping["PROPERTY: Single/Multiphase"].keys()),
230
+ label=input_cols["PROPERTY: Single/Multiphase"],
231
+ )
232
+ input_bccfcc = gr.Dropdown(
233
+ choices=list(input_mapping["PROPERTY: BCC/FCC/other"].keys()),
234
+ label=input_cols["PROPERTY: BCC/FCC/other"],
235
+ )
236
+ input_processing = gr.Dropdown(
237
+ choices=list(input_mapping["PROPERTY: Processing method"].keys()),
238
+ label=input_cols["PROPERTY: Processing method"],
239
+ )
240
+ input_microstructure = gr.CheckboxGroup(
241
+ choices=unique_phase_elements, #list(input_mapping["PROPERTY: Microstructure"].keys()),
242
+ label=input_cols["PROPERTY: Microstructure"],
243
+ )
244
+ with gr.Column():
245
+ with gr.Row():
246
+ with gr.Column():
247
+ gr.Markdown("### Your alloy's hardness (HV)")
248
+ output_hardness = gr.Text(label="Hardness (in HV)")
249
+ output_hardness_uncertainty = gr.Text(label="Hardness uncertainty (%)")
250
+ with gr.Column():
251
+ gr.Markdown("### Your alloy's yield strength (MPa)")
252
+ output_ys = gr.Text(label="Yield Strength (MPa)")
253
+ output_ys_uncertainty = gr.Text(label="Yield strength uncertainty (%)")
254
+ with gr.Row():
255
+ with gr.Column():
256
+ with gr.Row():
257
+ gr.Markdown("### Interpretation of hardness prediction")
258
+ gr.Markdown("### Interpretation of yield strength prediction")
259
+ with gr.Row():
260
+ output_interpretation = gr.Plot(label="Interpretation")
261
+ with gr.Row():
262
+ gr.Examples([example_inputs], [input_formula, input_phase, input_bccfcc, input_processing, input_microstructure])
263
+
264
+ train_button.click(
265
+ fn=train_model,
266
+ inputs=[input_csv, target_columns],
267
+ outputs=[output_text, output_plot, output_performance],
268
+ show_progress=True,
269
+ )
270
+
271
+ clear_train_button.click(
272
+ lambda x: [gr.update(value=None)] * 6,
273
+ [],
274
+ [input_file, input_csv, target_columns, output_text, output_plot, output_performance],
275
+ )
276
+
277
+ # upload_button.click(
278
+ # fn=upload_csv,
279
+ # inputs=[input_file],
280
+ # outputs=[input_csv, target_columns],
281
+ # show_progress=True,
282
+ # # every=2,
283
+ # )
284
+ input_file.change(
285
+ fn=upload_csv,
286
+ inputs=[input_file],
287
+ outputs=[input_csv, target_columns],
288
+ show_progress=True,
289
+ # every=2,
290
+ )
291
+
292
+ prediction_button.click(
293
+ fn=predict_from_tuple,
294
+ inputs=[input_formula, input_phase, input_bccfcc, input_processing, input_microstructure],
295
+ outputs=[
296
+ output_hardness,
297
+ output_hardness_uncertainty,
298
+ output_ys,
299
+ output_ys_uncertainty,
300
+ output_interpretation,
301
+
302
+ ],
303
+ show_progress=True,
304
+ )
305
+ clear_button.click(
306
+ lambda x: [gr.update(value=None)] * 10,
307
+ [],
308
+ [
309
+ input_formula,
310
+ input_phase,
311
+ input_bccfcc,
312
+ input_processing,
313
+ input_microstructure,
314
+ output_hardness,
315
+ output_hardness_uncertainty,
316
+ output_ys,
317
+ output_ys_uncertainty,
318
+ output_interpretation,
319
+ ],
320
+ )
321
+
322
+
323
+ if __name__ == "__main__":
324
+ demo.queue(concurrency_count=2)
325
+ demo.launch()