Update template_gradio_interface.py
Browse files
template_gradio_interface.py
CHANGED
@@ -57,13 +57,16 @@ def call_predict(inference_dict, cols_order):
|
|
57 |
scaler_targets = unpickle_file(inference_dict["inference"]["scaler_targets_path"])
|
58 |
encoder = unpickle_file(inference_dict["inference"]["encoder_path"])
|
59 |
explainer = unpickle_file(inference_dict["inference"]["explainer_path"])
|
|
|
|
|
|
|
|
|
60 |
|
61 |
|
62 |
def predict_from_list(x_list):
|
63 |
df = pd.DataFrame([x_list], columns=cols_order)
|
64 |
print(df.shape)
|
65 |
|
66 |
-
df_preprocessed =
|
67 |
|
68 |
y_pred, _, shap_values = predict(inference_dict["inference"]["model_path"], df_preprocessed, explainer)
|
69 |
|
|
|
57 |
scaler_targets = unpickle_file(inference_dict["inference"]["scaler_targets_path"])
|
58 |
encoder = unpickle_file(inference_dict["inference"]["encoder_path"])
|
59 |
explainer = unpickle_file(inference_dict["inference"]["explainer_path"])
|
60 |
+
|
61 |
+
categorical_columns = ["infill_pattern", "material"]
|
62 |
+
target_columns = ["roughness", "tension_strength", "elongation"]
|
63 |
+
numerical_columns = [c for c in cols_order if c not in categorical_columns]
|
64 |
|
65 |
|
66 |
def predict_from_list(x_list):
|
67 |
df = pd.DataFrame([x_list], columns=cols_order)
|
68 |
print(df.shape)
|
69 |
|
|
|
70 |
|
71 |
y_pred, _, shap_values = predict(inference_dict["inference"]["model_path"], df_preprocessed, explainer)
|
72 |
|