Update template_gradio_interface.py
Browse files
template_gradio_interface.py
CHANGED
@@ -30,8 +30,8 @@ def call_predict(inference_dict, cols_order):
|
|
30 |
# explainer = unpickle_file(inference_dict["explainer_path"])
|
31 |
|
32 |
categorical_columns = ["infill_pattern", "material"]
|
33 |
-
|
34 |
-
target_columns = ["roughness", "tension_strength"]
|
35 |
numerical_columns = [c for c in cols_order if c not in categorical_columns]
|
36 |
|
37 |
df_train = pd.read_csv("dataset_preprocessed.csv", sep=";")
|
@@ -67,7 +67,9 @@ def call_predict(inference_dict, cols_order):
|
|
67 |
|
68 |
print("mmmmmmmmmmmmmmmmmmmmm")
|
69 |
print(y_pred_rescaled.shape)
|
70 |
-
|
|
|
|
|
71 |
return y_pred_rescaled[0][0], 10, y_pred_rescaled[0][1], 10, fig
|
72 |
|
73 |
return lambda *x: predict_from_list(x)
|
|
|
30 |
# explainer = unpickle_file(inference_dict["explainer_path"])
|
31 |
|
32 |
categorical_columns = ["infill_pattern", "material"]
|
33 |
+
target_columns = ["roughness", "tension_strength", "elongation"]
|
34 |
+
# target_columns = ["roughness", "tension_strength"]
|
35 |
numerical_columns = [c for c in cols_order if c not in categorical_columns]
|
36 |
|
37 |
df_train = pd.read_csv("dataset_preprocessed.csv", sep=";")
|
|
|
67 |
|
68 |
print("mmmmmmmmmmmmmmmmmmmmm")
|
69 |
print(y_pred_rescaled.shape)
|
70 |
+
print(y_pred_rescaled[0][0])
|
71 |
+
print(y_pred_rescaled[0][1])
|
72 |
+
# return y_pred_rescaled[0][0], 10, y_pred_rescaled[0][1], 10, y_pred_rescaled[0][2], 10, fig
|
73 |
return y_pred_rescaled[0][0], 10, y_pred_rescaled[0][1], 10, fig
|
74 |
|
75 |
return lambda *x: predict_from_list(x)
|