bndl commited on
Commit
3d2e726
·
1 Parent(s): 2a3c399

Update template_gradio_interface.py

Browse files
Files changed (1) hide show
  1. template_gradio_interface.py +5 -3
template_gradio_interface.py CHANGED
@@ -30,8 +30,8 @@ def call_predict(inference_dict, cols_order):
30
  # explainer = unpickle_file(inference_dict["explainer_path"])
31
 
32
  categorical_columns = ["infill_pattern", "material"]
33
- # target_columns = ["roughness", "tension_strength", "elongation"]
34
- target_columns = ["roughness", "tension_strength"]
35
  numerical_columns = [c for c in cols_order if c not in categorical_columns]
36
 
37
  df_train = pd.read_csv("dataset_preprocessed.csv", sep=";")
@@ -67,7 +67,9 @@ def call_predict(inference_dict, cols_order):
67
 
68
  print("mmmmmmmmmmmmmmmmmmmmm")
69
  print(y_pred_rescaled.shape)
70
- return y_pred_rescaled[0][0], 10, y_pred_rescaled[0][1], 10, y_pred_rescaled[0][2], 10, fig
 
 
71
  return y_pred_rescaled[0][0], 10, y_pred_rescaled[0][1], 10, fig
72
 
73
  return lambda *x: predict_from_list(x)
 
30
  # explainer = unpickle_file(inference_dict["explainer_path"])
31
 
32
  categorical_columns = ["infill_pattern", "material"]
33
+ target_columns = ["roughness", "tension_strength", "elongation"]
34
+ # target_columns = ["roughness", "tension_strength"]
35
  numerical_columns = [c for c in cols_order if c not in categorical_columns]
36
 
37
  df_train = pd.read_csv("dataset_preprocessed.csv", sep=";")
 
67
 
68
  print("mmmmmmmmmmmmmmmmmmmmm")
69
  print(y_pred_rescaled.shape)
70
+ print(y_pred_rescaled[0][0])
71
+ print(y_pred_rescaled[0][1])
72
+ # return y_pred_rescaled[0][0], 10, y_pred_rescaled[0][1], 10, y_pred_rescaled[0][2], 10, fig
73
  return y_pred_rescaled[0][0], 10, y_pred_rescaled[0][1], 10, fig
74
 
75
  return lambda *x: predict_from_list(x)