""" Utils functions for preprocessing""" import pandas as pd from sklearn.preprocessing import OneHotEncoder, MinMaxScaler import pickle import tensorflow as tf import shap def aggregate_transform_df(original_df, transformed_df, transformed_cols): """ Helper function to aggregate the columns transformed with the original dataset """ print(original_df.shape) print(transformed_df.shape) df_final = original_df.drop(columns=transformed_cols) df_final = df_final.merge(transformed_df, left_index=True, right_index=True) print(df_final.shape) return df_final def encode_categorical(df, categorical_cols, method="OneHot", encoder=None, fit=True): """ Returns the dataframe where the categorical columns have been replaced according to the method selected Right now only OneHot is supported """ print(f"Running {method} encoding") if fit: encoder = OneHotEncoder() encoder.fit(df[categorical_cols]) array_transformed = encoder.transform(df[categorical_cols]).toarray() df_encoded = pd.DataFrame(array_transformed, columns=encoder.get_feature_names_out(), index=df.index) df_final = aggregate_transform_df(df, df_encoded, categorical_cols) if fit: return df_final, encoder else: return df_final def scale_numerical(df, numerical_cols, method="MinMax", scaler=None, fit=True): """ Returns the dataframe where the numerical columns have been scaled according to the method selected Right now only MinMax is supported """ print(f"Running {method} scaling") if fit: scaler = MinMaxScaler() scaler.fit(df[numerical_cols]) array_transformed = scaler.transform(df[numerical_cols]) df_transformed = pd.DataFrame(array_transformed, columns=numerical_cols, index=df.index) df_final = aggregate_transform_df(df, df_transformed, numerical_cols) if fit: return df_final, scaler else: return df_final def fill_nans(df, cols, method="mean"): df_filled = df.copy() print(f"Fill nans in {cols} with the {method} method") for col in cols: if method == "mean": df_filled[col] = df_filled[col].fillna(df[col].mean()) elif method == "mode": df_filled[col] = df_filled[col].fillna(df[col].mode()) return df_filled def encode_and_predict(model_path, data, one_hot_scaler, minmax_scaler_inputs, minmax_scaler_targets, categorical_columns, numerical_columns, target_columns, explainer=None): model = tf.keras.models.load_model(model_path) data = encode_categorical(data, categorical_columns, encoder=one_hot_scaler, fit=False) data = scale_numerical(data, numerical_columns, scaler=minmax_scaler_inputs, fit=False) if explainer: return model.predict(data), data.columns, explainer.shap_values(data[-10:]) else: return model.predict(data) def predict(model_path, data, explainer=None, df_train=None): model = tf.keras.models.load_model(model_path) if df_train is not None: explainer = shap.KernelExplainer(model.predict, df_train[:10]) return model.predict(data), data.columns, explainer.shap_values(data[-10:]) if explainer: return model.predict(data), data.columns, explainer.shap_values(data[-10:]) else: return model.predict(data) def unpickle_file(path): with open(path, "rb") as file: unpickler = pickle.Unpickler(file) unpickled_file = unpickler.load() return unpickled_file