Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -316,48 +316,7 @@ test_data_columns = ['Binder_ADA',
|
|
316 |
'Duration (h)',
|
317 |
'Washing_cycles',
|
318 |
'Concetration (µg/mL)']
|
319 |
-
|
320 |
|
321 |
-
### Define space and constrains
|
322 |
-
|
323 |
-
dimensionality_dict = {}
|
324 |
-
one_hot_mapping = {}
|
325 |
-
for c in categorical_columns:
|
326 |
-
dimensionality_dict[c] = 0
|
327 |
-
one_hot_mapping[c] = []
|
328 |
-
for c in categorical_columns:
|
329 |
-
for t in test_data_columns:
|
330 |
-
if c in t:
|
331 |
-
dimensionality_dict[c]+=1
|
332 |
-
one_hot_mapping[c].append(t)
|
333 |
-
|
334 |
-
domain = []
|
335 |
-
for column in targets:
|
336 |
-
df_columns.remove(column)
|
337 |
-
constrained_columns = ['Substrate', 'Washing_cycles', 'Microorganism ']
|
338 |
-
for c in df_columns:
|
339 |
-
if c in constrained_columns:
|
340 |
-
if c.startswith('Substrate'):
|
341 |
-
if c == substrate:
|
342 |
-
domain.append({'name': str(c), 'type': 'categorical', 'domain': (1.0, 1.0)})
|
343 |
-
else:
|
344 |
-
domain.append({'name': str(c), 'type': 'categorical', 'domain': (0.0, 0.0)})
|
345 |
-
if c == 'Microorganism ':
|
346 |
-
if c == microorganism:
|
347 |
-
domain.append({'name': str(c), 'type': 'categorical', 'domain': (1.0, 1.0)})
|
348 |
-
else:
|
349 |
-
domain.append({'name': str(c), 'type': 'categorical', 'domain': (0.0, 0.0)})
|
350 |
-
if c == 'Washing_cycles':
|
351 |
-
domain.append({'name': str(c), 'type': 'categorical', 'domain': (int(num_washing_cycles), int(num_washing_cycles))})
|
352 |
-
else:
|
353 |
-
if c in numerical_columns:
|
354 |
-
domain.append({'name': str(c), 'type': 'continuous', 'domain': (0.,1.)})
|
355 |
-
else:
|
356 |
-
domain.append({'name': str(c), 'type': 'categorical', 'domain': (0,1),
|
357 |
-
'dimensionality': dimensionality_dict[c]})
|
358 |
-
|
359 |
-
# Constraints
|
360 |
-
constraints = []
|
361 |
|
362 |
|
363 |
|
@@ -383,6 +342,47 @@ def fit_outputs_constraints(X, antimicrobial_activity_target, request: gr.Reques
|
|
383 |
|
384 |
def predict_inverse(antimicrobial_activity_target, request: gr.Request):
|
385 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
386 |
def fit_outputs(x):
|
387 |
return fit_outputs_constraints(x, antimicrobial_activity_target, request)
|
388 |
opt = GPyOpt.methods.BayesianOptimization(f = fit_outputs, # function to optimize
|
|
|
316 |
'Duration (h)',
|
317 |
'Washing_cycles',
|
318 |
'Concetration (µg/mL)']
|
|
|
319 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
320 |
|
321 |
|
322 |
|
|
|
342 |
|
343 |
def predict_inverse(antimicrobial_activity_target, request: gr.Request):
|
344 |
|
345 |
+
### Define space and constrains
|
346 |
+
|
347 |
+
dimensionality_dict = {}
|
348 |
+
one_hot_mapping = {}
|
349 |
+
for c in categorical_columns:
|
350 |
+
dimensionality_dict[c] = 0
|
351 |
+
one_hot_mapping[c] = []
|
352 |
+
for c in categorical_columns:
|
353 |
+
for t in test_data_columns:
|
354 |
+
if c in t:
|
355 |
+
dimensionality_dict[c]+=1
|
356 |
+
one_hot_mapping[c].append(t)
|
357 |
+
|
358 |
+
domain = []
|
359 |
+
for column in targets:
|
360 |
+
df_columns.remove(column)
|
361 |
+
constrained_columns = ['Substrate', 'Washing_cycles', 'Microorganism ']
|
362 |
+
for c in df_columns:
|
363 |
+
if c in constrained_columns:
|
364 |
+
if c.startswith('Substrate'):
|
365 |
+
if c == substrate:
|
366 |
+
domain.append({'name': str(c), 'type': 'categorical', 'domain': (1.0, 1.0)})
|
367 |
+
else:
|
368 |
+
domain.append({'name': str(c), 'type': 'categorical', 'domain': (0.0, 0.0)})
|
369 |
+
if c == 'Microorganism ':
|
370 |
+
if c == microorganism:
|
371 |
+
domain.append({'name': str(c), 'type': 'categorical', 'domain': (1.0, 1.0)})
|
372 |
+
else:
|
373 |
+
domain.append({'name': str(c), 'type': 'categorical', 'domain': (0.0, 0.0)})
|
374 |
+
if c == 'Washing_cycles':
|
375 |
+
domain.append({'name': str(c), 'type': 'categorical', 'domain': (int(num_washing_cycles), int(num_washing_cycles))})
|
376 |
+
else:
|
377 |
+
if c in numerical_columns:
|
378 |
+
domain.append({'name': str(c), 'type': 'continuous', 'domain': (0.,1.)})
|
379 |
+
else:
|
380 |
+
domain.append({'name': str(c), 'type': 'categorical', 'domain': (0,1),
|
381 |
+
'dimensionality': dimensionality_dict[c]})
|
382 |
+
|
383 |
+
# Constraints
|
384 |
+
constraints = []
|
385 |
+
|
386 |
def fit_outputs(x):
|
387 |
return fit_outputs_constraints(x, antimicrobial_activity_target, request)
|
388 |
opt = GPyOpt.methods.BayesianOptimization(f = fit_outputs, # function to optimize
|