Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -107,17 +107,18 @@ def predict(x, request: gr.Request):
|
|
107 |
return (round(y_hardness*(maximum_hardness-minimum_hardness)+minimum_hardness, 2), 12,
|
108 |
round(y_ys*(maximum_ys-minimum_ys)+minimum_ys, 2), 12)
|
109 |
|
110 |
-
def fit_outputs(X,
|
|
|
111 |
reduction_target_df = pd.DataFrame({'Reduction_%':[reduction_target]})
|
112 |
reduction_target_df = scale_numerical(reduction_target_df, ['Reduction_%'], scaler=minmax_scaler_targets, fit=False)
|
113 |
predictions = model.predict(X)[0]
|
114 |
error = np.sqrt(np.square(predictions[0]-reduction_target))
|
115 |
return error
|
116 |
|
117 |
-
def predict_inverse(
|
118 |
|
119 |
def fit_outputs(x):
|
120 |
-
return fit_outputs_constraints(x,
|
121 |
opt = GPyOpt.methods.BayesianOptimization(f = fit_outputs, # function to optimize
|
122 |
domain = domain, # box-constraints of the problem
|
123 |
constraints = constraints,
|
@@ -143,7 +144,7 @@ def predict_inverse(reduction_target, request: gr.Request):
|
|
143 |
return optimized_x.transpose()
|
144 |
|
145 |
|
146 |
-
example_inputs = [
|
147 |
|
148 |
css_styling = """#submit {background: #1eccd8}
|
149 |
#submit:hover {background: #a2f1f6}
|
@@ -180,8 +181,8 @@ with gr.Blocks(css=css_styling, title=page_title, theme=osium_theme) as demo:
|
|
180 |
prediction_button = gr.Button("Predict", elem_id="submit")
|
181 |
with gr.Row():
|
182 |
with gr.Column():
|
183 |
-
gr.Markdown("### The target
|
184 |
-
|
185 |
|
186 |
with gr.Column():
|
187 |
with gr.Row():
|
@@ -196,7 +197,7 @@ with gr.Blocks(css=css_styling, title=page_title, theme=osium_theme) as demo:
|
|
196 |
|
197 |
prediction_button.click(
|
198 |
fn=predict_inverse,
|
199 |
-
inputs=[
|
200 |
outputs=[optimal_conditions],
|
201 |
show_progress=True,
|
202 |
)
|
@@ -204,7 +205,7 @@ with gr.Blocks(css=css_styling, title=page_title, theme=osium_theme) as demo:
|
|
204 |
lambda x: [gr.update(value=None)] * 2,
|
205 |
[],
|
206 |
[
|
207 |
-
|
208 |
optimal_conditions,
|
209 |
],
|
210 |
)
|
|
|
107 |
return (round(y_hardness*(maximum_hardness-minimum_hardness)+minimum_hardness, 2), 12,
|
108 |
round(y_ys*(maximum_ys-minimum_ys)+minimum_ys, 2), 12)
|
109 |
|
110 |
+
def fit_outputs(X, antimicrobial_activity_target):
|
111 |
+
reduction_target = 100 - antimicrobial_activity_target
|
112 |
reduction_target_df = pd.DataFrame({'Reduction_%':[reduction_target]})
|
113 |
reduction_target_df = scale_numerical(reduction_target_df, ['Reduction_%'], scaler=minmax_scaler_targets, fit=False)
|
114 |
predictions = model.predict(X)[0]
|
115 |
error = np.sqrt(np.square(predictions[0]-reduction_target))
|
116 |
return error
|
117 |
|
118 |
+
def predict_inverse(antimicrobial_activity_target, request: gr.Request):
|
119 |
|
120 |
def fit_outputs(x):
|
121 |
+
return fit_outputs_constraints(x, antimicrobial_activity_target, request)
|
122 |
opt = GPyOpt.methods.BayesianOptimization(f = fit_outputs, # function to optimize
|
123 |
domain = domain, # box-constraints of the problem
|
124 |
constraints = constraints,
|
|
|
144 |
return optimized_x.transpose()
|
145 |
|
146 |
|
147 |
+
example_inputs = [80]
|
148 |
|
149 |
css_styling = """#submit {background: #1eccd8}
|
150 |
#submit:hover {background: #a2f1f6}
|
|
|
181 |
prediction_button = gr.Button("Predict", elem_id="submit")
|
182 |
with gr.Row():
|
183 |
with gr.Column():
|
184 |
+
gr.Markdown("### The target antimicrobial activity of your textile coating")
|
185 |
+
antimicrobial_activity_target = gr.Text(label="Enter the minimum acceptable antimicrobial activity for your textile coating")
|
186 |
|
187 |
with gr.Column():
|
188 |
with gr.Row():
|
|
|
197 |
|
198 |
prediction_button.click(
|
199 |
fn=predict_inverse,
|
200 |
+
inputs=[antimicrobial_activity_target],
|
201 |
outputs=[optimal_conditions],
|
202 |
show_progress=True,
|
203 |
)
|
|
|
205 |
lambda x: [gr.update(value=None)] * 2,
|
206 |
[],
|
207 |
[
|
208 |
+
antimicrobial_activity_target,
|
209 |
optimal_conditions,
|
210 |
],
|
211 |
)
|