snajmark's picture
Update app.py
592276d
raw
history blame
14.1 kB
import os
import csv
import gradio as gr
import tensorflow as tf
import numpy as np
import pandas as pd
from datetime import datetime
import utils
from huggingface_hub import Repository
import itertools
import GPyOpt
# Unique phase elements
# Load access tokens
WRITE_TOKEN = os.environ.get("WRITE_PER") # write
# Logs repo path
dataset_url = "https://huggingface.co/datasets/sandl/upload_alloy_hardness"
dataset_path = "logs_alloy_hardness.csv"
scaling_factors = {'PROPERTY: Calculated Density (g/cm$^3$)': (5.5, 13.7),
'PROPERTY: Calculated Young modulus (GPa)': (77.0, 336.0),
'PROPERTY: HV': (107.0, 1183.0),
'PROPERTY: YS (MPa)': (62.0, 3416.0)}
input_mapping = {'PROPERTY: BCC/FCC/other': {'BCC': 0, 'FCC': 1, 'OTHER': 2},#, 'nan': 2},
'PROPERTY: Processing method': {'ANNEAL': 0, 'CAST': 1, 'OTHER': 2, 'POWDER': 3, 'WROUGHT': 4},#, 'nan': 2},
'PROPERTY: Microstructure': {'B2': 0, 'B2+BCC': 1, 'B2+L12': 2, 'B2+Laves+Sec.': 3, 'B2+Sec.': 4, 'BCC': 5,
'BCC+B2': 6, 'BCC+B2+FCC': 7, 'BCC+B2+FCC+Sec.': 8, 'BCC+B2+L12': 9, 'BCC+B2+Laves': 10,
'BCC+B2+Sec.': 11, 'BCC+BCC': 12, 'BCC+BCC+HCP': 13, 'BCC+BCC+Laves': 14,
'BCC+BCC+Laves(C14)': 15, 'BCC+BCC+Laves(C15)': 16, 'BCC+FCC': 17, 'BCC+HCP': 18,
'BCC+Laves': 19, 'BCC+Laves(C14)': 20, 'BCC+Laves(C15)': 21, 'BCC+Laves+Sec.': 22,
'BCC+Sec.': 23, 'FCC': 24, 'FCC+B2': 25, 'FCC+B2+Sec.': 26, 'FCC+BCC': 27,
'FCC+BCC+B2': 28, 'FCC+BCC+B2+Sec.': 29, 'FCC+BCC+BCC': 30, 'FCC+BCC+Sec.': 31,
'FCC+FCC': 32, 'FCC+HCP': 33, 'FCC+HCP+Sec.': 34, 'FCC+L12': 35, 'FCC+L12+B2': 36,
'FCC+L12+Sec.': 37, 'FCC+Laves': 38, 'FCC+Laves(C14)': 39, 'FCC+Laves+Sec.': 40,
'FCC+Sec.': 41, 'L12+B2': 42, 'Laves(C14)+Sec.': 43, 'OTHER': 44},#, 'nan': 44},
'PROPERTY: Single/Multiphase': {'': 0, 'M': 1, 'S': 2, 'OTHER': 3}}#, 'nan': 3}}
unique_phase_elements = ['B2', 'BCC', 'FCC', 'HCP', 'L12', 'Laves', 'Laves(C14)', 'Laves(C15)', 'Sec.', 'OTHER']
input_cols = {
"PROPERTY: Alloy formula": "(PROPERTY: Alloy formula) "
"Enter alloy formula using proportions representation (i.e. Al0.25 Co1 Fe1 Ni1)",
"PROPERTY: Single/Multiphase": "(PROPERTY: Single/Multiphase) "
"Choose between Single (S), Multiphase (M) and other (OTHER)",
"PROPERTY: BCC/FCC/other": "(PROPERTY: BCC/FCC/other) "
"Choose between BCC, FCC and other ",
"PROPERTY: Processing method": "(PROPERTY: Processing method) "
"Choose your processing method (ANNEAL, CAST, POWDER, WROUGHT or OTHER)",
"PROPERTY: Microstructure": "(PROPERTY: Microstructure) "
"Choose the microstructure (SEC means the secondary/tertiary microstructure is not one of FCC, BCC, HCP, L12, B2, Laves, Laves (C14), Laves (C15))",
}
def process_microstructure(list_phases):
permutations = list(itertools.permutations(list_phases))
permutations_strings = [str('+'.join(list(e))) for e in permutations]
for e in permutations_strings:
if e in list(input_mapping['PROPERTY: Microstructure'].keys()):
return e
return 'OTHER'
def write_logs(message, message_type="Prediction"):
"""
Write logs
"""
#with Repository(local_dir="data", clone_from=dataset_url, use_auth_token=WRITE_TOKEN).commit(commit_message="from private", blocking=False):
# with open(dataset_path, "a") as csvfile:
# writer = csv.DictWriter(csvfile, fieldnames=["name", "message", "time"])
# writer.writerow(
# {"name": message_type, "message": message, "time": str(datetime.now())}
# )
return
def predict(x, request: gr.Request):
"""
Predict the hardness and yield strength using the ML model. Input data is a dataframe
"""
loaded_model = tf.keras.models.load_model("hardness.h5")
print("summary is", loaded_model.summary())
#x = x.replace("", 0)
x = np.asarray(x).astype("float32")
y = loaded_model.predict(x)
y_hardness = y[0][0]
y_ys = y[0][1]
minimum_hardness, maximum_hardness = scaling_factors['PROPERTY: HV']
minimum_ys, maximum_ys = scaling_factors['PROPERTY: YS (MPa)']
print("Prediction is ", y)
if request is not None: # Verify if request is not None (when building the app the first request is None)
message = f"{request.username}_{request.client.host}"
print("MESSAGE")
print(message)
res = write_logs(message)
interpret_fig = utils.interpret(x)
return (round(y_hardness*(maximum_hardness-minimum_hardness)+minimum_hardness, 2), 12,
round(y_ys*(maximum_ys-minimum_ys)+minimum_ys, 2), 12, interpret_fig)
def predict_from_tuple(in1, in2, in3, in4, in5, request: gr.Request):
"""
Predict the hardness using the ML model. Input data is a tuple. Input order should be the same as the cols list
"""
input_tuple = (in1, in2, in3, in4, in5)
formula = utils.normalize_and_alphabetize_formula(in1)
density = utils.calculate_density(formula)
young_modulus = utils.calculate_youngs_modulus(formula)
input_dict = {}
in2 = input_mapping['PROPERTY: Single/Multiphase'][str(in2)]
input_dict['PROPERTY: Single/Multiphase'] = [int(in2)]
in3 = input_mapping['PROPERTY: BCC/FCC/other'][str(in3)]
input_dict['PROPERTY: BCC/FCC/other'] = [int(in3)]
in4 = input_mapping['PROPERTY: Processing method'][str(in4)]
input_dict['PROPERTY: Processing method'] = [int(in4)]
in5 = process_microstructure(in5)
in5 = input_mapping['PROPERTY: Microstructure'][in5]
input_dict['PROPERTY: Microstructure'] = [int(in5)]
density_scaling_factors = scaling_factors['PROPERTY: Calculated Density (g/cm$^3$)']
density = (density-density_scaling_factors[0])/(
density_scaling_factors[1]-density_scaling_factors[0])
input_dict['PROPERTY: Calculated Density (g/cm$^3$)'] = [float(density)]
ym_scaling_factors = scaling_factors['PROPERTY: Calculated Young modulus (GPa)']
young_modulus = (young_modulus-ym_scaling_factors[0])/(
ym_scaling_factors[1]-ym_scaling_factors[0])
input_dict['PROPERTY: Calculated Young modulus (GPa)'] = [float(young_modulus)]
input_df = pd.DataFrame.from_dict(input_dict)
one_hot = utils.turn_into_one_hot(input_df, input_mapping)
print("One hot columns are ", one_hot.columns)
return predict(one_hot, request)
def fit_outputs_constraints(x, hardness_target, ys_target, request: gr.Request):
predictions = predict(x, request)
error_hardness = np.sqrt(np.square(predictions[0]-hardness_target))
error_ys = np.sqrt(np.square(predictions[2]-ys_target))
print(predictions, hardness_target, ys_target, error_hardness, error_ys)
return error_hardness + error_ys
def predict_inverse(hardness_target, ys_target, request: gr.Request):
one_hot_columns = utils.return_feature_names()
continuous_variables = ['PROPERTY: Calculated Density (g/cm$^3$)',
'PROPERTY: Calculated Young modulus (GPa)']
categorical_variables = list(one_hot_columns)
for c in continuous_variables:
categorical_variables.remove(c)
domain = []
for c in one_hot_columns:
if c in continuous_variables:
if c == continuous_variables[0]:
domain.append({'name': str(c), 'type': 'continuous', 'domain': (0.528, 0.528)})#(0.,1.)})
else:
domain.append({'name': str(c), 'type': 'continuous', 'domain': (0.539, 0.539)})#(0.,1.)})
else:
domain.append({'name': str(c), 'type': 'discrete', 'domain': (0,1)})
constraints = []
constrained_columns = ['Single/Multiphase', 'Preprocessing method', 'BCC/FCC/other']#, 'Microstructure']
for constraint in constrained_columns:
sum_string = ''
for i in range (len(one_hot_columns)):
column_one_hot = one_hot_columns[i]
if column_one_hot.startswith(constraint):
sum_string = sum_string+"+x[:," + str(i) + "]"
constraints.append({'name': constraint + "+1", 'constraint': sum_string + '-1'})
constraints.append({'name': constraint + "-1", 'constraint': '-1*(' + sum_string + ')+1'})
def fit_outputs(x):
return fit_outputs_constraints(x, hardness_target, ys_target, request)
opt = GPyOpt.methods.BayesianOptimization(f = fit_outputs, # function to optimize
domain = domain, # box-constraints of the problem
constraints = constraints,
acquisition_type ='LCB', # LCB acquisition
acquisition_weight = 0.1) # Exploration exploitation
# it may take a few seconds
opt.run_optimization(max_iter=50)
opt.plot_convergence()
x_best = opt.X[np.argmin(opt.Y)]
best_params = dict(zip(
[el['name'] for el in domain],
[[x] for x in x_best]))
optimized_x = pd.DataFrame.from_dict(best_params)
for c in optimized_x.columns:
if c in continuous_variables:
optimized_x[c]=optimized_x[c]*(dictionary[c][1]-dictionary[c][0])+dictionary[c][0]
optimized_x = optimized_x[['PROPERTY: Calculated Density (g/cm$^3$)',
'PROPERTY: Calculated Young modulus (GPa)',
'Preprocessing method ANNEAL',
'Preprocessing method CAST', 'Preprocessing method OTHER',
'Preprocessing method POWDER', 'Preprocessing method WROUGHT',
'BCC/FCC/other BCC', 'BCC/FCC/other FCC', 'BCC/FCC/other OTHER',
'Single/Multiphase ', 'Single/Multiphase M', 'Single/Multiphase S']]
result = optimized_x
result = result[result>0.0].dropna(axis=1)
return result
example_inputs = [420, 10]
css_styling = """#submit {background: #1eccd8}
submit {color: white}
.output-image, .input-image, .image-preview {height: 250px !important}
.output-plot {height: 250px !important}"""
new_blue_color = gr.themes.Color(c50="#FFFFFF", # Dataframe background cell content - light mode only
c100="#0c1538", # Text of markdown (headers) and componnet contencts
c200="#000000", # Text of component headers
c300="#a1c6db", # Login button when used in primary color
c400="#000000", # Text of "or" objects and footer
c500="#000000", # Text of component headers in light mode only
c600="#e4f3fa", # Clear button (gradient between c600 and c700 + mouse over)
c700="#a1c6db", # Componennt borders
c800="#e4f3fa", # Background of components
c900="#a1c6db", # Etiquette of components
c950="#FFFFFF") # Background
# secondary color used for highlight box content when typing in light mode, and download option in dark mode
# primary color used for login button in dark mode
osium_theme = gr.themes.Default(primary_hue="cyan", secondary_hue="cyan", neutral_hue=new_blue_color)
page_title = "Alloys' hardness and yield strength prediction"
favicon_path = "osiumai_favicon.ico"
logo_path = "osiumai_logo.jpg"
html = f"""<html> <link rel="icon" type="image/x-icon" href="file={favicon_path}">
<img src='file={logo_path}' alt='Osium AI logo' width='200' height='100'> </html>"""
with gr.Blocks(css=css_styling, title=page_title, theme=osium_theme) as demo:
gr.HTML(html)
gr.Markdown("# <p style='text-align: center;'>Get optimal alloy recommendations based on your target performance</p>")
gr.Markdown("This AI model provides a recommended alloy formula, microstructure and processing conditions based on your target hardness and yield strength")
with gr.Row():
clear_button = gr.Button("Clear")
prediction_button = gr.Button("Predict", elem_id="submit")
with gr.Row():
with gr.Column():
gr.Markdown("### The target performance of your alloy")
input_hardness = gr.Text(label="Enter your target hardness (in HV)")
input_yield_strength = gr.Text(label="Enter your target yield strength (MPa)")
with gr.Column():
gr.Markdown("### Your optimal formulation and processing conditions")
optimal_parameters = gr.DataFrame(label="Optimal parameters")
# with gr.Column():
# gr.Markdown("### Your alloy's yield strength (MPa)")
# output_ys = gr.Text(label="Yield Strength (MPa)")
# output_ys_uncertainty = gr.Text(label="Yield strength uncertainty (%)")
# output_ys_interpretation = gr.Plot(label="Yield strength interpretation")
with gr.Row():
gr.Examples([example_inputs], [input_hardness, input_yield_strength])
prediction_button.click(
fn=predict_inverse,
inputs=[input_hardness, input_yield_strength],
outputs=[
optimal_parameters
],
show_progress=True,
)
clear_button.click(
lambda x: [gr.update(value=None)] * 8,
[],
[
optimal_parameters,
input_hardness,
input_yield_strength,
],
)
if __name__ == "__main__":
demo.queue(concurrency_count=2)
demo.launch()