snajmark commited on
Commit
031aefe
·
1 Parent(s): 08254d7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -3
app.py CHANGED
@@ -144,7 +144,7 @@ def fit_outputs_constraints(x, hardness_target, ys_target, request: gr.Request):
144
  error_hardness, error_ys)
145
  return error_hardness + error_ys
146
 
147
- def predict_inverse(hardness_target, ys_target, request: gr.Request):
148
 
149
  one_hot_columns = utils.return_feature_names()
150
 
@@ -154,16 +154,25 @@ def predict_inverse(hardness_target, ys_target, request: gr.Request):
154
  for c in continuous_variables:
155
  categorical_variables.remove(c)
156
 
 
 
 
 
157
  domain = []
158
  for c in one_hot_columns:
159
  if c in continuous_variables:
160
  if c == continuous_variables[0]:
161
- domain.append({'name': str(c), 'type': 'continuous', 'domain': (0.528, 0.528)})#(0.,1.)})
 
 
162
  else:
163
- domain.append({'name': str(c), 'type': 'continuous', 'domain': (0.539, 0.539)})#(0.,1.)})
 
 
164
  else:
165
  domain.append({'name': str(c), 'type': 'discrete', 'domain': (0,1)})
166
 
 
167
  constraints = []
168
  constrained_columns = ['Single/Multiphase', 'Preprocessing method', 'BCC/FCC/other']#, 'Microstructure']
169
 
 
144
  error_hardness, error_ys)
145
  return error_hardness + error_ys
146
 
147
+ def predict_inverse(hardness_target, ys_target, formula, request: gr.Request):
148
 
149
  one_hot_columns = utils.return_feature_names()
150
 
 
154
  for c in continuous_variables:
155
  categorical_variables.remove(c)
156
 
157
+
158
+ fixed_density = utils.calculate_density(str(formula))
159
+ fixed_ym = utils.calculate_youngs_modulus(str(formula))
160
+
161
  domain = []
162
  for c in one_hot_columns:
163
  if c in continuous_variables:
164
  if c == continuous_variables[0]:
165
+ domain_density = (fixed_density-scaling_factors[c][0])/(
166
+ scaling_factors[c][1]-scaling_factors[c][0])
167
+ domain.append({'name': str(c), 'type': 'continuous', 'domain': (domain_density)})#(0.,1.)})
168
  else:
169
+ domain_ym = (fixed_ym-scaling_factors[c][0])/(
170
+ scaling_factors[c][1]-scaling_factors[c][0])
171
+ domain.append({'name': str(c), 'type': 'continuous', 'domain': (domain_ym)})#(0.,1.)})
172
  else:
173
  domain.append({'name': str(c), 'type': 'discrete', 'domain': (0,1)})
174
 
175
+ print("Domain is ", domain)
176
  constraints = []
177
  constrained_columns = ['Single/Multiphase', 'Preprocessing method', 'BCC/FCC/other']#, 'Microstructure']
178