Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -192,6 +192,7 @@ def predict_inverse(hardness_target, ys_target, request: gr.Request):
|
|
192 |
[el['name'] for el in domain],
|
193 |
[[x] for x in x_best]))
|
194 |
optimized_x = pd.DataFrame.from_dict(best_params)
|
|
|
195 |
#for c in optimized_x.columns:
|
196 |
# if c in continuous_variables:
|
197 |
# optimized_x[c]=optimized_x[c]*(scaling_factors[c][1]-scaling_factors[c][0])+scaling_factors[c][0]
|
@@ -204,7 +205,7 @@ def predict_inverse(hardness_target, ys_target, request: gr.Request):
|
|
204 |
'Single/Multiphase ', 'Single/Multiphase M', 'Single/Multiphase S']]
|
205 |
result = optimized_x
|
206 |
result = result[result>0.0].dropna(axis=1)
|
207 |
-
return result
|
208 |
|
209 |
|
210 |
example_inputs = [420, 10]
|
@@ -248,11 +249,16 @@ with gr.Blocks(css=css_styling, title=page_title) as demo:
|
|
248 |
input_hardness = gr.Text(label="Enter your target hardness (in HV)")
|
249 |
input_yield_strength = gr.Text(label="Enter your target yield strength (MPa)")
|
250 |
with gr.Column():
|
251 |
-
gr.
|
252 |
-
|
253 |
-
|
254 |
-
gr.
|
255 |
-
|
|
|
|
|
|
|
|
|
|
|
256 |
|
257 |
with gr.Row():
|
258 |
gr.Examples([example_inputs], [input_hardness, input_yield_strength])
|
@@ -263,17 +269,19 @@ with gr.Blocks(css=css_styling, title=page_title) as demo:
|
|
263 |
fn=predict_inverse,
|
264 |
inputs=[input_hardness, input_yield_strength],
|
265 |
outputs=[
|
266 |
-
optimal_parameters
|
|
|
267 |
],
|
268 |
show_progress=True,
|
269 |
)
|
270 |
clear_button.click(
|
271 |
-
lambda x: [gr.update(value=None)] *
|
272 |
[],
|
273 |
[
|
274 |
optimal_parameters,
|
275 |
input_hardness,
|
276 |
input_yield_strength,
|
|
|
277 |
],
|
278 |
)
|
279 |
|
|
|
192 |
[el['name'] for el in domain],
|
193 |
[[x] for x in x_best]))
|
194 |
optimized_x = pd.DataFrame.from_dict(best_params)
|
195 |
+
plot = utils.interpret(optimized_x)
|
196 |
#for c in optimized_x.columns:
|
197 |
# if c in continuous_variables:
|
198 |
# optimized_x[c]=optimized_x[c]*(scaling_factors[c][1]-scaling_factors[c][0])+scaling_factors[c][0]
|
|
|
205 |
'Single/Multiphase ', 'Single/Multiphase M', 'Single/Multiphase S']]
|
206 |
result = optimized_x
|
207 |
result = result[result>0.0].dropna(axis=1)
|
208 |
+
return result, plot
|
209 |
|
210 |
|
211 |
example_inputs = [420, 10]
|
|
|
249 |
input_hardness = gr.Text(label="Enter your target hardness (in HV)")
|
250 |
input_yield_strength = gr.Text(label="Enter your target yield strength (MPa)")
|
251 |
with gr.Column():
|
252 |
+
with gr.Row():
|
253 |
+
gr.Markdown("### Your optimal formulation and processing conditions")
|
254 |
+
optimal_parameters = gr.DataFrame(label="Optimal parameters", wrap=True)
|
255 |
+
with gr.Row():
|
256 |
+
with gr.Column():
|
257 |
+
with gr.Row():
|
258 |
+
gr.Markdown("### Interpretation of hardness prediction")
|
259 |
+
gr.Markdown("### Interpretation of yield strength prediction")
|
260 |
+
with gr.Row():
|
261 |
+
output_interpretation = gr.Plot(label="Interpretation")
|
262 |
|
263 |
with gr.Row():
|
264 |
gr.Examples([example_inputs], [input_hardness, input_yield_strength])
|
|
|
269 |
fn=predict_inverse,
|
270 |
inputs=[input_hardness, input_yield_strength],
|
271 |
outputs=[
|
272 |
+
optimal_parameters,
|
273 |
+
output_interpretation,
|
274 |
],
|
275 |
show_progress=True,
|
276 |
)
|
277 |
clear_button.click(
|
278 |
+
lambda x: [gr.update(value=None)] * 4,
|
279 |
[],
|
280 |
[
|
281 |
optimal_parameters,
|
282 |
input_hardness,
|
283 |
input_yield_strength,
|
284 |
+
output_interpretation,
|
285 |
],
|
286 |
)
|
287 |
|