bndl commited on
Commit
69fcc0d
·
1 Parent(s): 699ed53

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +246 -0
app.py ADDED
@@ -0,0 +1,246 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import csv
3
+ import gradio as gr
4
+ import tensorflow as tf
5
+ import numpy as np
6
+ import pandas as pd
7
+ from datetime import datetime
8
+ import utils
9
+ from huggingface_hub import Repository
10
+ import itertools
11
+
12
+ # Unique phase elements
13
+
14
+ # Load access tokens
15
+ WRITE_TOKEN = os.environ.get("WRITE_PER") # write
16
+
17
+ # Logs repo path
18
+ dataset_url = "https://huggingface.co/datasets/sandl/upload_alloy_hardness"
19
+ dataset_path = "logs_alloy_hardness.csv"
20
+
21
+ scaling_factors = {'PROPERTY: Calculated Density (g/cm$^3$)': (5.5, 13.7),
22
+ 'PROPERTY: Calculated Young modulus (GPa)': (77.0, 336.0),
23
+ 'PROPERTY: HV': (107.0, 1183.0),
24
+ 'PROPERTY: YS (MPa)': (62.0, 3416.0)}
25
+
26
+ input_mapping = {'PROPERTY: BCC/FCC/other': {'BCC': 0, 'FCC': 1, 'OTHER': 2, 'nan': 2},
27
+ 'PROPERTY: Processing method': {'ANNEAL': 0, 'CAST': 1, 'OTHER': 2, 'POWDER': 3, 'WROUGHT': 4, 'nan': 2},
28
+ 'PROPERTY: Microstructure': {'B2': 0, 'B2+BCC': 1, 'B2+L12': 2, 'B2+Laves+Sec.': 3, 'B2+Sec.': 4, 'BCC': 5,
29
+ 'BCC+B2': 6, 'BCC+B2+FCC': 7, 'BCC+B2+FCC+Sec.': 8, 'BCC+B2+L12': 9, 'BCC+B2+Laves': 10,
30
+ 'BCC+B2+Sec.': 11, 'BCC+BCC': 12, 'BCC+BCC+HCP': 13, 'BCC+BCC+Laves': 14,
31
+ 'BCC+BCC+Laves(C14)': 15, 'BCC+BCC+Laves(C15)': 16, 'BCC+FCC': 17, 'BCC+HCP': 18,
32
+ 'BCC+Laves': 19, 'BCC+Laves(C14)': 20, 'BCC+Laves(C15)': 21, 'BCC+Laves+Sec.': 22,
33
+ 'BCC+Sec.': 23, 'FCC': 24, 'FCC+B2': 25, 'FCC+B2+Sec.': 26, 'FCC+BCC': 27,
34
+ 'FCC+BCC+B2': 28, 'FCC+BCC+B2+Sec.': 29, 'FCC+BCC+BCC': 30, 'FCC+BCC+Sec.': 31,
35
+ 'FCC+FCC': 32, 'FCC+HCP': 33, 'FCC+HCP+Sec.': 34, 'FCC+L12': 35, 'FCC+L12+B2': 36,
36
+ 'FCC+L12+Sec.': 37, 'FCC+Laves': 38, 'FCC+Laves(C14)': 39, 'FCC+Laves+Sec.': 40,
37
+ 'FCC+Sec.': 41, 'L12+B2': 42, 'Laves(C14)+Sec.': 43, 'OTHER': 44, 'nan': 44},
38
+ 'PROPERTY: Single/Multiphase': {'': 0, 'M': 1, 'S': 2, 'OTHER': 3, 'nan': 3}}
39
+
40
+ unique_phase_elements = ['B2', 'BCC', 'FCC', 'HCP', 'L12', 'Laves', 'Laves(C14)', 'Laves(C15)', 'Sec.', 'OTHER']
41
+
42
+ input_cols = {
43
+ "PROPERTY: Alloy formula": "(PROPERTY: Alloy formula) "
44
+ "Recommended alloy formula using proportions representation (i.e. Al0.25 Co1 Fe1 Ni1)",
45
+ "PROPERTY: Single/Multiphase": "(PROPERTY: Single/Multiphase) "
46
+ "Recommended between Single (S), Multiphase (M) and other (OTHER)",
47
+ "PROPERTY: BCC/FCC/other": "(PROPERTY: BCC/FCC/other) "
48
+ "Recommended microstructure between BCC, FCC and other ",
49
+ "PROPERTY: Processing method": "(PROPERTY: Processing method) "
50
+ "Recommended processing method (ANNEAL, CAST, POWDER, WROUGHT or OTHER)",
51
+ "PROPERTY: Microstructure": "(PROPERTY: Microstructure) "
52
+ "Recommended microstructure (SEC means the secondary/tertiary microstructure is not one of FCC, BCC, HCP, L12, B2, Laves, Laves (C14), Laves (C15))",
53
+ }
54
+
55
+ def process_microstructure(list_phases):
56
+ permutations = list(itertools.permutations(list_phases))
57
+ permutations_strings = [str('+'.join(list(e))) for e in permutations]
58
+ for e in permutations_strings:
59
+ if e in list(input_mapping['PROPERTY: Microstructure'].keys()):
60
+ return e
61
+ return 'OTHER'
62
+
63
+ def write_logs(message, message_type="Prediction"):
64
+ """
65
+ Write logs
66
+ """
67
+ # with Repository(local_dir="data", clone_from=dataset_url, use_auth_token=WRITE_TOKEN).commit(commit_message="from private", blocking=False):
68
+ # with open(dataset_path, "a") as csvfile:
69
+ # writer = csv.DictWriter(csvfile, fieldnames=["name", "message", "time"])
70
+ # writer.writerow(
71
+ # {"name": message_type, "message": message, "time": str(datetime.now())}
72
+ # )
73
+ print(message)
74
+ return
75
+
76
+ def predict(x, request: gr.Request):
77
+ """
78
+ Predict the hardness and yield strength using the ML model. Input data is a dataframe
79
+ """
80
+ loaded_model = tf.keras.models.load_model("models/hardness_old.h5")
81
+ print("summary is", loaded_model.summary())
82
+ x = x.replace("", 0)
83
+ x = np.asarray(x).astype("float32")
84
+ y = loaded_model.predict(x)
85
+ y_hardness = y[0][0]
86
+ # y_ys = y[0][1]
87
+ minimum_hardness, maximum_hardness = scaling_factors['PROPERTY: HV']
88
+ minimum_ys, maximum_ys = scaling_factors['PROPERTY: YS (MPa)']
89
+ print("Prediction is ", y)
90
+ if request is not None: # Verify if request is not None (when building the app the first request is None)
91
+ message = f"{request.username}_{request.client.host}"
92
+ print("MESSAGE")
93
+ print(message)
94
+ res = write_logs(message)
95
+ interpret_fig_hardness, fig2 = utils.interpret(x)
96
+ #interpret_fig_ys = utils.interpret(x, 1)
97
+ return (np.round(y_hardness*(maximum_hardness-minimum_hardness)+minimum_hardness, 2), 12, interpret_fig_hardness)
98
+
99
+
100
+ def predict_from_tuple(in1, in2, in3, in4, in5, request: gr.Request):
101
+ """
102
+ Predict the hardness using the ML model. Input data is a tuple. Input order should be the same as the cols list
103
+ """
104
+ input_tuple = (in1, in2, in3, in4, in5)
105
+ formula = utils.normalize_and_alphabetize_formula(in1)
106
+ density = utils.calculate_density(formula)
107
+ young_modulus = utils.calculate_youngs_modulus(formula)
108
+ input_dict = {}
109
+
110
+ in2 = input_mapping['PROPERTY: Single/Multiphase'][str(in2)]
111
+ input_dict['PROPERTY: Single/Multiphase'] = [int(in2)]
112
+
113
+ in3 = input_mapping['PROPERTY: BCC/FCC/other'][str(in3)]
114
+ input_dict['PROPERTY: BCC/FCC/other'] = [int(in3)]
115
+
116
+ in4 = input_mapping['PROPERTY: Processing method'][str(in4)]
117
+ input_dict['PROPERTY: Processing method'] = [int(in4)]
118
+
119
+ in5 = process_microstructure(in5)
120
+ in5 = input_mapping['PROPERTY: Microstructure'][in5]
121
+ input_dict['PROPERTY: Microstructure'] = [int(in5)]
122
+
123
+ density_scaling_factors = scaling_factors['PROPERTY: Calculated Density (g/cm$^3$)']
124
+ density = (density-density_scaling_factors[0])/(
125
+ density_scaling_factors[1]-density_scaling_factors[0])
126
+ input_dict['PROPERTY: Calculated Density (g/cm$^3$)'] = [float(density)]
127
+
128
+
129
+ ym_scaling_factors = scaling_factors['PROPERTY: Calculated Young modulus (GPa)']
130
+ young_modulus = (young_modulus-ym_scaling_factors[0])/(
131
+ ym_scaling_factors[1]-ym_scaling_factors[0])
132
+ input_dict['PROPERTY: Calculated Young modulus (GPa)'] = [float(young_modulus)]
133
+
134
+ input_df = pd.DataFrame.from_dict(input_dict)
135
+ one_hot = utils.turn_into_one_hot(input_df, input_mapping)
136
+ print("One hot columns are ", one_hot.columns)
137
+ # return predict(input_df, request)
138
+ return predict(one_hot, request)
139
+
140
+
141
+ def predict_inverse(target_hardness, target_yield_strength, request: gr.Request):
142
+ return "Al1", "S", "BCC", "CAST", "HCP"
143
+
144
+
145
+ example_inputs = [420, 10]
146
+
147
+ css_styling = """#submit {background: #1eccd8}
148
+ submit {color: white}
149
+ .output-image, .input-image, .image-preview {height: 250px !important}
150
+ .output-plot {height: 250px !important}"""
151
+
152
+ new_blue_color = gr.themes.Color(c50="#FFFFFF", # Dataframe background cell content - light mode only
153
+ c100="#0c1538", # Text of markdown (headers) and componnet contencts
154
+ c200="#000000", # Text of component headers
155
+ c300="#a1c6db", # Login button when used in primary color
156
+ c400="#000000", # Text of "or" objects and footer
157
+ c500="#000000", # Text of component headers in light mode only
158
+ c600="#e4f3fa", # Clear button (gradient between c600 and c700 + mouse over)
159
+ c700="#a1c6db", # Componennt borders
160
+ c800="#e4f3fa", # Background of components
161
+ c900="#a1c6db", # Etiquette of components
162
+ c950="#FFFFFF") # Background
163
+ # secondary color used for highlight box content when typing in light mode, and download option in dark mode
164
+ # primary color used for login button in dark mode
165
+ osium_theme = gr.themes.Default(primary_hue="cyan", secondary_hue="cyan", neutral_hue=new_blue_color)
166
+ page_title = "Alloys' hardness and yield strength prediction"
167
+ favicon_path = "osiumai_favicon.ico"
168
+ logo_path = "osiumai_logo.jpg"
169
+ html = f"""<html> <link rel="icon" type="image/x-icon" href="file={favicon_path}">
170
+ <img src='file={logo_path}' alt='Osium AI logo' width='200' height='100'> </html>"""
171
+
172
+
173
+ with gr.Blocks(css=css_styling, title=page_title, theme=osium_theme) as demo:
174
+ gr.HTML(html)
175
+ gr.Markdown("# <p style='text-align: center;'>Get optimal alloy recommendations based on your target performance</p>")
176
+ gr.Markdown("This AI model provides a recommended alloy formula, microstructure and processing conditions based on your target hardness and yield strength")
177
+ with gr.Row():
178
+ clear_button = gr.Button("Clear")
179
+ prediction_button = gr.Button("Predict", elem_id="submit")
180
+ with gr.Row():
181
+ with gr.Column():
182
+ gr.Markdown("### The target performance of your alloy")
183
+ input_hardness = gr.Text(label="Enter your target hardness (in HV)")
184
+ input_yield_strength = gr.Text(label="Enter your target yield strength (MPa)")
185
+ with gr.Column():
186
+ gr.Markdown("### Your optimal formulation and processing conditions")
187
+ output_formula = gr.Textbox(
188
+ lines=1, label=input_cols["PROPERTY: Alloy formula"]
189
+ )
190
+ output_phase = gr.Dropdown(
191
+ choices=list(input_mapping["PROPERTY: Single/Multiphase"].keys()),
192
+ label=input_cols["PROPERTY: Single/Multiphase"],
193
+ )
194
+ output_bccfcc = gr.Dropdown(
195
+ choices=list(input_mapping["PROPERTY: BCC/FCC/other"].keys()),
196
+ label=input_cols["PROPERTY: BCC/FCC/other"],
197
+ )
198
+ output_processing = gr.Dropdown(
199
+ choices=list(input_mapping["PROPERTY: Processing method"].keys()),
200
+ label=input_cols["PROPERTY: Processing method"],
201
+ )
202
+ output_microstructure = gr.CheckboxGroup(
203
+ choices=unique_phase_elements, #list(input_mapping["PROPERTY: Microstructure"].keys()),
204
+ label=input_cols["PROPERTY: Microstructure"],
205
+ )
206
+
207
+ # with gr.Column():
208
+ # gr.Markdown("### Your alloy's yield strength (MPa)")
209
+ # output_ys = gr.Text(label="Yield Strength (MPa)")
210
+ # output_ys_uncertainty = gr.Text(label="Yield strength uncertainty (%)")
211
+ # output_ys_interpretation = gr.Plot(label="Yield strength interpretation")
212
+ with gr.Row():
213
+ gr.Examples([example_inputs], [input_hardness, input_yield_strength])
214
+
215
+
216
+
217
+ prediction_button.click(
218
+ fn=predict_inverse,
219
+ inputs=[input_hardness, input_yield_strength],
220
+ outputs=[
221
+ output_formula,
222
+ output_phase,
223
+ output_bccfcc,
224
+ output_processing,
225
+ output_microstructure
226
+ ],
227
+ show_progress=True,
228
+ )
229
+ clear_button.click(
230
+ lambda x: [gr.update(value=None)] * 8,
231
+ [],
232
+ [
233
+ output_formula,
234
+ output_phase,
235
+ output_bccfcc,
236
+ output_processing,
237
+ output_microstructure,
238
+ input_hardness,
239
+ input_yield_strength,
240
+ ],
241
+ )
242
+
243
+
244
+ if __name__ == "__main__":
245
+ demo.queue(concurrency_count=2)
246
+ demo.launch()