Spaces:
Runtime error
Runtime error
Update utils.py
Browse files
utils.py
CHANGED
@@ -8,14 +8,14 @@ import joblib
|
|
8 |
import matplotlib.pyplot as plt
|
9 |
|
10 |
# Explainer path
|
11 |
-
explainer_filename = "
|
12 |
|
13 |
feature_names = ['PROPERTY: BCC/FCC/other', 'PROPERTY: Calculated Density (g/cm$^3$)',
|
14 |
'PROPERTY: Calculated Young modulus (GPa)',
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
'Microstructure B2',
|
20 |
'Microstructure B2+BCC', 'Microstructure B2+L12',
|
21 |
'Microstructure B2+Laves+Sec.', 'Microstructure B2+Sec.',
|
@@ -43,8 +43,8 @@ feature_names = ['PROPERTY: BCC/FCC/other', 'PROPERTY: Calculated Density (g/cm$
|
|
43 |
'Preprocessing method CAST', 'Preprocessing method OTHER',
|
44 |
'Preprocessing method POWDER', 'Preprocessing method WROUGHT',
|
45 |
'BCC/FCC/other BCC', 'BCC/FCC/other FCC', 'BCC/FCC/other OTHER',
|
46 |
-
|
47 |
-
|
48 |
|
49 |
def return_feature_names():
|
50 |
return feature_names
|
@@ -140,44 +140,9 @@ def return_num_classes_one_hot(df):
|
|
140 |
"Num classes single/multiphase": num_classes_single_multiphase,
|
141 |
"Num classes bcc/fcc/other": num_classes_bcc_fcc_other}
|
142 |
|
143 |
-
# def turn_into_one_hot(X, mapping_dict):
|
144 |
-
# one_hot = X
|
145 |
-
# num_classes_one_hot = {'Num classes microstructure': 45, 'Num classes preprocessing': 5,
|
146 |
-
# 'Num classes single/multiphase': 3, 'Num classes bcc/fcc/other': 3}
|
147 |
-
# one_hot["Microstructure One Hot"] = X["PROPERTY: Microstructure"].apply(to_categorical_num_classes_microstructure, num_classes_one_hot=num_classes_one_hot)
|
148 |
-
# one_hot["Processing Method One Hot"] = X["PROPERTY: Processing method"].apply(to_categorical_num_classes_processing,
|
149 |
-
# num_classes_one_hot=num_classes_one_hot)
|
150 |
-
# one_hot["BCC/FCC/other One Hot"] = X["PROPERTY: BCC/FCC/other"].apply(to_categorical_bcc_fcc_other,
|
151 |
-
# num_classes_one_hot=num_classes_one_hot)
|
152 |
-
# one_hot["Single/Multiphase One Hot"] = X["PROPERTY: Single/Multiphase"].apply(to_categorical_single_multiphase,
|
153 |
-
# num_classes_one_hot=num_classes_one_hot)
|
154 |
-
|
155 |
-
# flatten_microstructure = one_hot["Microstructure One Hot"].apply(pd.Series)
|
156 |
-
# flatten_processing = one_hot["Processing Method One Hot"].apply(pd.Series)
|
157 |
-
# flatten_bcc_fcc_other = one_hot["BCC/FCC/other One Hot"].apply(pd.Series)
|
158 |
-
# flatten_single_multiphase = one_hot["Single/Multiphase One Hot"].apply(pd.Series)
|
159 |
-
|
160 |
-
# one_hot.drop(columns=["Microstructure One Hot", "Processing Method One Hot", "BCC/FCC/other One Hot",
|
161 |
-
# "Single/Multiphase One Hot"])
|
162 |
-
|
163 |
-
# for column in flatten_microstructure.columns:
|
164 |
-
# one_hot["Microstructure " + str(
|
165 |
-
# list(mapping_dict["PROPERTY: Microstructure"].keys())[int(column)])] = flatten_microstructure[int(column)]
|
166 |
-
# for column in flatten_processing.columns:
|
167 |
-
# one_hot["Preprocessing method " + str(list(mapping_dict["PROPERTY: Processing method"].keys())[int(column)])] = flatten_processing[column]
|
168 |
-
# for column in flatten_bcc_fcc_other.columns:
|
169 |
-
# one_hot["BCC/FCC/other " + str(list(mapping_dict["PROPERTY: BCC/FCC/other"].keys())[int(column)])] = flatten_bcc_fcc_other[column]
|
170 |
-
# for column in flatten_single_multiphase.columns:
|
171 |
-
# one_hot["Single/Multiphase " + str(list(mapping_dict["PROPERTY: Single/Multiphase"].keys())[int(column)])] = flatten_single_multiphase[column]
|
172 |
-
|
173 |
-
# one_hot = one_hot.drop(columns=["PROPERTY: Microstructure", "Microstructure One Hot", "BCC/FCC/other One Hot", "Single/Multiphase One Hot",
|
174 |
-
# "Processing Method One Hot", "PROPERTY: Processing method", "PROPERTY: BCC/FCC/other", "PROPERTY: Single/Multiphase"])
|
175 |
-
# return one_hot
|
176 |
-
|
177 |
-
|
178 |
def turn_into_one_hot(X, mapping_dict):
|
179 |
one_hot = X
|
180 |
-
num_classes_one_hot = {'Num classes microstructure':
|
181 |
'Num classes single/multiphase': 3, 'Num classes bcc/fcc/other': 3}
|
182 |
one_hot["Microstructure One Hot"] = X["PROPERTY: Microstructure"].apply(to_categorical_num_classes_microstructure, num_classes_one_hot=num_classes_one_hot)
|
183 |
one_hot["Processing Method One Hot"] = X["PROPERTY: Processing method"].apply(to_categorical_num_classes_processing,
|
@@ -205,5 +170,6 @@ def turn_into_one_hot(X, mapping_dict):
|
|
205 |
for column in flatten_single_multiphase.columns:
|
206 |
one_hot["Single/Multiphase " + str(list(mapping_dict["PROPERTY: Single/Multiphase"].keys())[int(column)])] = flatten_single_multiphase[column]
|
207 |
|
208 |
-
one_hot = one_hot.drop(columns=["PROPERTY: Microstructure", "Microstructure One Hot", "BCC/FCC/other One Hot", "Single/Multiphase One Hot",
|
|
|
209 |
return one_hot
|
|
|
8 |
import matplotlib.pyplot as plt
|
9 |
|
10 |
# Explainer path
|
11 |
+
explainer_filename = "models/explainer_old.bz2"
|
12 |
|
13 |
feature_names = ['PROPERTY: BCC/FCC/other', 'PROPERTY: Calculated Density (g/cm$^3$)',
|
14 |
'PROPERTY: Calculated Young modulus (GPa)',
|
15 |
+
'PROPERTY: Processing method', 'PROPERTY: Microstructure',
|
16 |
+
'PROPERTY: Single/Multiphase', 'Microstructure One Hot',
|
17 |
+
'Processing Method One Hot', 'BCC/FCC/other One Hot',
|
18 |
+
'Single/Multiphase One Hot',
|
19 |
'Microstructure B2',
|
20 |
'Microstructure B2+BCC', 'Microstructure B2+L12',
|
21 |
'Microstructure B2+Laves+Sec.', 'Microstructure B2+Sec.',
|
|
|
43 |
'Preprocessing method CAST', 'Preprocessing method OTHER',
|
44 |
'Preprocessing method POWDER', 'Preprocessing method WROUGHT',
|
45 |
'BCC/FCC/other BCC', 'BCC/FCC/other FCC', 'BCC/FCC/other OTHER',
|
46 |
+
'Single/Multiphase ',
|
47 |
+
'Single/Multiphase M', 'Single/Multiphase S']
|
48 |
|
49 |
def return_feature_names():
|
50 |
return feature_names
|
|
|
140 |
"Num classes single/multiphase": num_classes_single_multiphase,
|
141 |
"Num classes bcc/fcc/other": num_classes_bcc_fcc_other}
|
142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
def turn_into_one_hot(X, mapping_dict):
|
144 |
one_hot = X
|
145 |
+
num_classes_one_hot = {'Num classes microstructure': 45, 'Num classes preprocessing': 5,
|
146 |
'Num classes single/multiphase': 3, 'Num classes bcc/fcc/other': 3}
|
147 |
one_hot["Microstructure One Hot"] = X["PROPERTY: Microstructure"].apply(to_categorical_num_classes_microstructure, num_classes_one_hot=num_classes_one_hot)
|
148 |
one_hot["Processing Method One Hot"] = X["PROPERTY: Processing method"].apply(to_categorical_num_classes_processing,
|
|
|
170 |
for column in flatten_single_multiphase.columns:
|
171 |
one_hot["Single/Multiphase " + str(list(mapping_dict["PROPERTY: Single/Multiphase"].keys())[int(column)])] = flatten_single_multiphase[column]
|
172 |
|
173 |
+
one_hot = one_hot.drop(columns=["PROPERTY: Microstructure", "Microstructure One Hot", "BCC/FCC/other One Hot", "Single/Multiphase One Hot",
|
174 |
+
"Processing Method One Hot", "PROPERTY: Processing method", "PROPERTY: BCC/FCC/other", "PROPERTY: Single/Multiphase"])
|
175 |
return one_hot
|