snajmark commited on
Commit
c9e11c2
·
1 Parent(s): 8aa8a59

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -5
app.py CHANGED
@@ -135,17 +135,13 @@ def predict_from_tuple(in1, in2, in3, in4, in5, request: gr.Request):
135
  print("One hot columns are ", one_hot.columns)
136
  return predict(one_hot, request)
137
 
138
- hardness_target = 1
139
- ys_target = 2
140
-
141
- def fit_outputs(x):
142
  predictions = predict(x)
143
  error_hardness = np.sqrt(np.square(predictions[0]-hardness_target))
144
  error_ys = np.sqrt(np.square(predictions[2]-ys_target))
145
  print(predictions, hardness_target, ys_target, error_hardness, error_ys)
146
  return error_hardness + error_ys
147
 
148
-
149
  def predict_inverse(hardness_target, ys_target, request: gr.Request):
150
 
151
  continuous_variables = ['PROPERTY: Calculated Density (g/cm$^3$)',
@@ -176,6 +172,9 @@ def predict_inverse(hardness_target, ys_target, request: gr.Request):
176
  constraints.append({'name': constraint + "+1", 'constraint': sum_string + '-1'})
177
  constraints.append({'name': constraint + "-1", 'constraint': '-1*(' + sum_string + ')+1'})
178
 
 
 
 
179
  opt = GPyOpt.methods.BayesianOptimization(f = fit_outputs, # function to optimize
180
  domain = domain, # box-constraints of the problem
181
  constraints = constraints,
 
135
  print("One hot columns are ", one_hot.columns)
136
  return predict(one_hot, request)
137
 
138
+ def fit_outputs_constraints(x, hardness_target, ys_target):
 
 
 
139
  predictions = predict(x)
140
  error_hardness = np.sqrt(np.square(predictions[0]-hardness_target))
141
  error_ys = np.sqrt(np.square(predictions[2]-ys_target))
142
  print(predictions, hardness_target, ys_target, error_hardness, error_ys)
143
  return error_hardness + error_ys
144
 
 
145
  def predict_inverse(hardness_target, ys_target, request: gr.Request):
146
 
147
  continuous_variables = ['PROPERTY: Calculated Density (g/cm$^3$)',
 
172
  constraints.append({'name': constraint + "+1", 'constraint': sum_string + '-1'})
173
  constraints.append({'name': constraint + "-1", 'constraint': '-1*(' + sum_string + ')+1'})
174
 
175
+ def fit_outputs(x):
176
+ return fit_outputs_constraints(x, harndess_target, ys_target)
177
+
178
  opt = GPyOpt.methods.BayesianOptimization(f = fit_outputs, # function to optimize
179
  domain = domain, # box-constraints of the problem
180
  constraints = constraints,