Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -96,47 +96,7 @@ def predict(x, request: gr.Request):
|
|
96 |
return (round(y_hardness*(maximum_hardness-minimum_hardness)+minimum_hardness, 2), 12,
|
97 |
round(y_ys*(maximum_ys-minimum_ys)+minimum_ys, 2), 12)
|
98 |
|
99 |
-
|
100 |
-
def predict_from_tuple(in1, in2, in3, in4, in5, request: gr.Request):
|
101 |
-
"""
|
102 |
-
Predict the hardness using the ML model. Input data is a tuple. Input order should be the same as the cols list
|
103 |
-
"""
|
104 |
-
input_tuple = (in1, in2, in3, in4, in5)
|
105 |
-
formula = utils.normalize_and_alphabetize_formula(in1)
|
106 |
-
density = utils.calculate_density(formula)
|
107 |
-
young_modulus = utils.calculate_youngs_modulus(formula)
|
108 |
-
input_dict = {}
|
109 |
-
|
110 |
-
in2 = input_mapping['PROPERTY: Single/Multiphase'][str(in2)]
|
111 |
-
input_dict['PROPERTY: Single/Multiphase'] = [int(in2)]
|
112 |
-
|
113 |
-
in3 = input_mapping['PROPERTY: BCC/FCC/other'][str(in3)]
|
114 |
-
input_dict['PROPERTY: BCC/FCC/other'] = [int(in3)]
|
115 |
-
|
116 |
-
in4 = input_mapping['PROPERTY: Processing method'][str(in4)]
|
117 |
-
input_dict['PROPERTY: Processing method'] = [int(in4)]
|
118 |
-
|
119 |
-
in5 = process_microstructure(in5)
|
120 |
-
in5 = input_mapping['PROPERTY: Microstructure'][in5]
|
121 |
-
input_dict['PROPERTY: Microstructure'] = [int(in5)]
|
122 |
-
|
123 |
-
density_scaling_factors = scaling_factors['PROPERTY: Calculated Density (g/cm$^3$)']
|
124 |
-
density = (density-density_scaling_factors[0])/(
|
125 |
-
density_scaling_factors[1]-density_scaling_factors[0])
|
126 |
-
input_dict['PROPERTY: Calculated Density (g/cm$^3$)'] = [float(density)]
|
127 |
-
|
128 |
-
|
129 |
-
ym_scaling_factors = scaling_factors['PROPERTY: Calculated Young modulus (GPa)']
|
130 |
-
young_modulus = (young_modulus-ym_scaling_factors[0])/(
|
131 |
-
ym_scaling_factors[1]-ym_scaling_factors[0])
|
132 |
-
input_dict['PROPERTY: Calculated Young modulus (GPa)'] = [float(young_modulus)]
|
133 |
-
|
134 |
-
input_df = pd.DataFrame.from_dict(input_dict)
|
135 |
-
one_hot = utils.turn_into_one_hot(input_df, input_mapping)
|
136 |
-
print("One hot columns are ", one_hot.columns)
|
137 |
-
return predict(one_hot, request)
|
138 |
-
|
139 |
-
def fit_outputs_constraints(x, hardness_target, ys_target, request: gr.Request):
|
140 |
predictions = predict(x, request)
|
141 |
error_hardness = np.sqrt(np.square(predictions[0]-float(hardness_target)))
|
142 |
error_ys = np.sqrt(np.square(predictions[2]-float(ys_target)))
|
@@ -144,47 +104,56 @@ def fit_outputs_constraints(x, hardness_target, ys_target, request: gr.Request):
|
|
144 |
error_hardness, error_ys)
|
145 |
return error_hardness + error_ys
|
146 |
|
147 |
-
def predict_inverse(
|
|
|
|
|
148 |
|
149 |
-
|
|
|
150 |
|
151 |
continuous_variables = ['PROPERTY: Calculated Density (g/cm$^3$)',
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
for c in continuous_variables:
|
155 |
categorical_variables.remove(c)
|
156 |
|
|
|
|
|
|
|
|
|
157 |
|
158 |
-
|
159 |
-
fixed_ym = utils.calculate_youngs_modulus(str(formula))
|
160 |
-
|
161 |
domain = []
|
162 |
-
for c in
|
163 |
if c in continuous_variables:
|
164 |
-
if c
|
165 |
-
|
166 |
-
scaling_factors[c][1]-scaling_factors[c][0])
|
167 |
-
domain.append({'name': str(c), 'type': 'continuous', 'domain': (domain_density, domain_density)})#(0.,1.)})
|
168 |
else:
|
169 |
-
|
170 |
-
scaling_factors[c][1]-scaling_factors[c][0])
|
171 |
-
domain.append({'name': str(c), 'type': 'continuous', 'domain': (domain_ym, domain_ym)})#(0.,1.)})
|
172 |
else:
|
173 |
domain.append({'name': str(c), 'type': 'discrete', 'domain': (0,1)})
|
174 |
|
175 |
-
|
176 |
constraints = []
|
177 |
-
constrained_columns = ['Single/Multiphase', 'Preprocessing method', 'BCC/FCC/other']#, 'Microstructure']
|
178 |
-
|
179 |
for constraint in constrained_columns:
|
180 |
sum_string = ''
|
181 |
-
|
182 |
-
|
183 |
if column_one_hot.startswith(constraint):
|
184 |
sum_string = sum_string+"+x[:," + str(i) + "]"
|
185 |
constraints.append({'name': constraint + "+1", 'constraint': sum_string + '-1'})
|
186 |
constraints.append({'name': constraint + "-1", 'constraint': '-1*(' + sum_string + ')+1'})
|
187 |
|
|
|
188 |
def fit_outputs(x):
|
189 |
return fit_outputs_constraints(x, hardness_target, ys_target, request)
|
190 |
|
@@ -194,29 +163,30 @@ def predict_inverse(hardness_target, ys_target, formula, request: gr.Request):
|
|
194 |
acquisition_type ='LCB', # LCB acquisition
|
195 |
acquisition_weight = 0.1) # Exploration exploitation
|
196 |
# it may take a few seconds
|
197 |
-
opt.run_optimization(max_iter=
|
198 |
-
opt.plot_convergence()
|
199 |
x_best = opt.X[np.argmin(opt.Y)]
|
200 |
best_params = dict(zip(
|
201 |
[el['name'] for el in domain],
|
202 |
[[x] for x in x_best]))
|
203 |
optimized_x = pd.DataFrame.from_dict(best_params)
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
'PROPERTY: Calculated Young modulus (GPa)',
|
209 |
-
'Preprocessing method ANNEAL',
|
210 |
-
'Preprocessing method CAST', 'Preprocessing method OTHER',
|
211 |
-
'Preprocessing method POWDER', 'Preprocessing method WROUGHT',
|
212 |
-
'BCC/FCC/other BCC', 'BCC/FCC/other FCC', 'BCC/FCC/other OTHER',
|
213 |
-
'Single/Multiphase ', 'Single/Multiphase M', 'Single/Multiphase S']]
|
214 |
result = optimized_x
|
215 |
-
result = result[result>0.0].dropna(axis=1)
|
216 |
-
return list(result.keys())[2:]
|
217 |
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
|
219 |
-
|
|
|
|
|
|
|
220 |
|
221 |
css_styling = """#submit {background: #1eccd8}
|
222 |
#submit:hover {background: #a2f1f6}
|
@@ -253,22 +223,20 @@ with gr.Blocks(css=css_styling, title=page_title, theme=osium_theme) as demo:
|
|
253 |
prediction_button = gr.Button("Predict", elem_id="submit")
|
254 |
with gr.Row():
|
255 |
with gr.Column():
|
256 |
-
gr.Markdown("### Your alloy formula")
|
257 |
-
formula = gr.Text(label = "Alloy formula")
|
258 |
gr.Markdown("### The target performance of your alloy")
|
259 |
input_hardness = gr.Text(label="Enter your target hardness (in HV)")
|
260 |
input_yield_strength = gr.Text(label="Enter your target yield strength (MPa)")
|
261 |
with gr.Column():
|
262 |
with gr.Row():
|
263 |
-
with gr.Column():
|
264 |
-
|
265 |
-
|
266 |
-
with gr.Column():
|
267 |
-
|
268 |
-
with gr.Column():
|
269 |
-
|
270 |
-
with gr.Column():
|
271 |
-
|
272 |
#with gr.Row():
|
273 |
#with gr.Column():
|
274 |
#with gr.Row():
|
@@ -284,11 +252,8 @@ with gr.Blocks(css=css_styling, title=page_title, theme=osium_theme) as demo:
|
|
284 |
|
285 |
prediction_button.click(
|
286 |
fn=predict_inverse,
|
287 |
-
inputs=[input_hardness, input_yield_strength
|
288 |
-
outputs=[
|
289 |
-
param1,
|
290 |
-
param2,
|
291 |
-
param3,
|
292 |
],
|
293 |
show_progress=True,
|
294 |
)
|
|
|
96 |
return (round(y_hardness*(maximum_hardness-minimum_hardness)+minimum_hardness, 2), 12,
|
97 |
round(y_ys*(maximum_ys-minimum_ys)+minimum_ys, 2), 12)
|
98 |
|
99 |
+
def fit_outputs_constraints(x, hardness_target, ys_target, metals_to_use, request: gr.Request):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
predictions = predict(x, request)
|
101 |
error_hardness = np.sqrt(np.square(predictions[0]-float(hardness_target)))
|
102 |
error_ys = np.sqrt(np.square(predictions[2]-float(ys_target)))
|
|
|
104 |
error_hardness, error_ys)
|
105 |
return error_hardness + error_ys
|
106 |
|
107 |
+
def predict_inverse(hardness_original_target, ys_original_target, request: gr.Request):
|
108 |
+
|
109 |
+
#one_hot_columns = utils.return_feature_names()
|
110 |
|
111 |
+
hardness_target = (hardness_original_target-min_df_hardness)/(max_df_hardness-min_df_hardness)
|
112 |
+
ys_target = (ys_original_target-min_df_ys)/(max_df_ys-min_df_ys)
|
113 |
|
114 |
continuous_variables = ['PROPERTY: Calculated Density (g/cm$^3$)',
|
115 |
+
'PROPERTY: Calculated Young modulus (GPa)',
|
116 |
+
'PROPERTY: Metal Al', 'PROPERTY: Metal Co',
|
117 |
+
'PROPERTY: Metal Fe', 'PROPERTY: Metal Ni', 'PROPERTY: Metal Si',
|
118 |
+
'PROPERTY: Metal Cr', 'PROPERTY: Metal Nb', 'PROPERTY: Metal Ti',
|
119 |
+
'PROPERTY: Metal Mn', 'PROPERTY: Metal V', 'PROPERTY: Metal Mo',
|
120 |
+
'PROPERTY: Metal Cu', 'PROPERTY: Metal Ta', 'PROPERTY: Metal Zr',
|
121 |
+
'PROPERTY: Metal Hf', 'PROPERTY: Metal W', 'PROPERTY: Metal Zn',
|
122 |
+
'PROPERTY: Metal Sn', 'PROPERTY: Metal Re', 'PROPERTY: Metal C',
|
123 |
+
'PROPERTY: Metal Pd', 'PROPERTY: Metal Sc', 'PROPERTY: Metal Y']
|
124 |
+
categorical_variables = list(one_hot.columns)
|
125 |
for c in continuous_variables:
|
126 |
categorical_variables.remove(c)
|
127 |
|
128 |
+
# Metals constraints
|
129 |
+
metals_elements = [c for c in continuous_variables if c.startswith("PROPERTY: Metal")]
|
130 |
+
metals_to_use = ['Al', 'Co', 'Fe', 'Cr']
|
131 |
+
metals_to_use = ["PROPERTY: Metal " + metals_to_use[i] for i in range(len(metals_to_use))]
|
132 |
|
133 |
+
# Domain
|
|
|
|
|
134 |
domain = []
|
135 |
+
for c in one_hot.columns:
|
136 |
if c in continuous_variables:
|
137 |
+
if c.startswith("PROPERTY: Metal") and c not in metals_to_use:
|
138 |
+
domain.append({'name': str(c), 'type': 'continuous', 'domain': (0., 0.)})
|
|
|
|
|
139 |
else:
|
140 |
+
domain.append({'name': str(c), 'type': 'continuous', 'domain': (0., 1.)})#(0.,1.)})
|
|
|
|
|
141 |
else:
|
142 |
domain.append({'name': str(c), 'type': 'discrete', 'domain': (0,1)})
|
143 |
|
144 |
+
# Constraints
|
145 |
constraints = []
|
146 |
+
constrained_columns = ['Single/Multiphase', 'Preprocessing method', 'BCC/FCC/other'] #'PROPERTY: Metal']#, 'Microstructure']
|
|
|
147 |
for constraint in constrained_columns:
|
148 |
sum_string = ''
|
149 |
+
for i in range (len(one_hot.columns)):
|
150 |
+
column_one_hot = one_hot.columns[i]
|
151 |
if column_one_hot.startswith(constraint):
|
152 |
sum_string = sum_string+"+x[:," + str(i) + "]"
|
153 |
constraints.append({'name': constraint + "+1", 'constraint': sum_string + '-1'})
|
154 |
constraints.append({'name': constraint + "-1", 'constraint': '-1*(' + sum_string + ')+1'})
|
155 |
|
156 |
+
|
157 |
def fit_outputs(x):
|
158 |
return fit_outputs_constraints(x, hardness_target, ys_target, request)
|
159 |
|
|
|
163 |
acquisition_type ='LCB', # LCB acquisition
|
164 |
acquisition_weight = 0.1) # Exploration exploitation
|
165 |
# it may take a few seconds
|
166 |
+
opt.run_optimization(max_iter=50)
|
167 |
+
# opt.plot_convergence()
|
168 |
x_best = opt.X[np.argmin(opt.Y)]
|
169 |
best_params = dict(zip(
|
170 |
[el['name'] for el in domain],
|
171 |
[[x] for x in x_best]))
|
172 |
optimized_x = pd.DataFrame.from_dict(best_params)
|
173 |
+
for c in optimized_x.columns:
|
174 |
+
if c in continuous_variables:
|
175 |
+
if c in ['PROPERTY: Calculated Density (g/cm$^3$)', 'PROPERTY: Calculated Young modulus (GPa)']:
|
176 |
+
optimized_x[c]=optimized_x[c]*(scales_dictionary[c][1]-scales_dictionary[c][0])+scales_dictionary[c][0]
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
result = optimized_x
|
|
|
|
|
178 |
|
179 |
+
# Normalize metals outputs
|
180 |
+
sum_metals = np.sum(result[c] for c in list(result. columns) if c.startswith("PROPERTY: Metal"))
|
181 |
+
for column in result.columns:
|
182 |
+
if column.startswith("PROPERTY: Metal"):
|
183 |
+
result[column]/= sum_metals
|
184 |
+
result = result.transpose()
|
185 |
|
186 |
+
return result
|
187 |
+
|
188 |
+
|
189 |
+
example_inputs = [820, 1800]
|
190 |
|
191 |
css_styling = """#submit {background: #1eccd8}
|
192 |
#submit:hover {background: #a2f1f6}
|
|
|
223 |
prediction_button = gr.Button("Predict", elem_id="submit")
|
224 |
with gr.Row():
|
225 |
with gr.Column():
|
|
|
|
|
226 |
gr.Markdown("### The target performance of your alloy")
|
227 |
input_hardness = gr.Text(label="Enter your target hardness (in HV)")
|
228 |
input_yield_strength = gr.Text(label="Enter your target yield strength (MPa)")
|
229 |
with gr.Column():
|
230 |
with gr.Row():
|
231 |
+
#with gr.Column():
|
232 |
+
# gr.Markdown("### Your optimal microstructure and processing conditions")
|
233 |
+
optimal_parameters = gr.DataFrame(label="Optimal parameters", wrap=True)
|
234 |
+
#with gr.Column():
|
235 |
+
# param1 = gr.Text(label="Processing method")
|
236 |
+
#with gr.Column():
|
237 |
+
# param2 = gr.Text(label="Microstructure")
|
238 |
+
#with gr.Column():
|
239 |
+
# param3 = gr.Text(label="Phase")
|
240 |
#with gr.Row():
|
241 |
#with gr.Column():
|
242 |
#with gr.Row():
|
|
|
252 |
|
253 |
prediction_button.click(
|
254 |
fn=predict_inverse,
|
255 |
+
inputs=[input_hardness, input_yield_strength],
|
256 |
+
outputs=[optimal_parameters
|
|
|
|
|
|
|
257 |
],
|
258 |
show_progress=True,
|
259 |
)
|