Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -145,6 +145,9 @@ def predict_inverse(hardness_original_target, ys_original_target, metals_to_use,
|
|
145 |
else:
|
146 |
domain.append({'name': str(c), 'type': 'discrete', 'domain': (0,1)})
|
147 |
|
|
|
|
|
|
|
148 |
# Constraints
|
149 |
constraints = []
|
150 |
constrained_columns = ['Single/Multiphase', 'Preprocessing method', 'BCC/FCC/other'] #'PROPERTY: Metal']#, 'Microstructure']
|
@@ -156,7 +159,9 @@ def predict_inverse(hardness_original_target, ys_original_target, metals_to_use,
|
|
156 |
sum_string = sum_string+"+x[:," + str(i) + "]"
|
157 |
constraints.append({'name': constraint + "+1", 'constraint': sum_string + '-1'})
|
158 |
constraints.append({'name': constraint + "-1", 'constraint': '-1*(' + sum_string + ')+1'})
|
159 |
-
|
|
|
|
|
160 |
|
161 |
def fit_outputs(x):
|
162 |
return fit_outputs_constraints(x, hardness_target, ys_target, request)
|
@@ -174,6 +179,8 @@ def predict_inverse(hardness_original_target, ys_original_target, metals_to_use,
|
|
174 |
[el['name'] for el in domain],
|
175 |
[[x] for x in x_best]))
|
176 |
optimized_x = pd.DataFrame.from_dict(best_params)
|
|
|
|
|
177 |
for c in optimized_x.columns:
|
178 |
if c in continuous_variables:
|
179 |
if c in ['PROPERTY: Calculated Density (g/cm$^3$)', 'PROPERTY: Calculated Young modulus (GPa)']:
|
@@ -181,10 +188,7 @@ def predict_inverse(hardness_original_target, ys_original_target, metals_to_use,
|
|
181 |
print(optimized_x[c])
|
182 |
optimized_x[c]=round(optimized_x[c]*(scaling_factors[c][1]-scaling_factors[c][0])+scaling_factors[c][0], 2)
|
183 |
result = optimized_x
|
184 |
-
print(result)
|
185 |
result = result[result>0.0].dropna(axis=1)
|
186 |
-
print("-------------")
|
187 |
-
print(result)
|
188 |
|
189 |
# Normalize metals outputs
|
190 |
sum_metals = np.sum(result[c] for c in list(result.columns) if c.startswith("PROPERTY: Metal"))
|
|
|
145 |
else:
|
146 |
domain.append({'name': str(c), 'type': 'discrete', 'domain': (0,1)})
|
147 |
|
148 |
+
print("************")
|
149 |
+
print("Domain")
|
150 |
+
print(domain)
|
151 |
# Constraints
|
152 |
constraints = []
|
153 |
constrained_columns = ['Single/Multiphase', 'Preprocessing method', 'BCC/FCC/other'] #'PROPERTY: Metal']#, 'Microstructure']
|
|
|
159 |
sum_string = sum_string+"+x[:," + str(i) + "]"
|
160 |
constraints.append({'name': constraint + "+1", 'constraint': sum_string + '-1'})
|
161 |
constraints.append({'name': constraint + "-1", 'constraint': '-1*(' + sum_string + ')+1'})
|
162 |
+
print("********************")
|
163 |
+
print("Constraints")
|
164 |
+
print(constraints)
|
165 |
|
166 |
def fit_outputs(x):
|
167 |
return fit_outputs_constraints(x, hardness_target, ys_target, request)
|
|
|
179 |
[el['name'] for el in domain],
|
180 |
[[x] for x in x_best]))
|
181 |
optimized_x = pd.DataFrame.from_dict(best_params)
|
182 |
+
print("Optimized parameters")
|
183 |
+
print(optimized_x.columns)
|
184 |
for c in optimized_x.columns:
|
185 |
if c in continuous_variables:
|
186 |
if c in ['PROPERTY: Calculated Density (g/cm$^3$)', 'PROPERTY: Calculated Young modulus (GPa)']:
|
|
|
188 |
print(optimized_x[c])
|
189 |
optimized_x[c]=round(optimized_x[c]*(scaling_factors[c][1]-scaling_factors[c][0])+scaling_factors[c][0], 2)
|
190 |
result = optimized_x
|
|
|
191 |
result = result[result>0.0].dropna(axis=1)
|
|
|
|
|
192 |
|
193 |
# Normalize metals outputs
|
194 |
sum_metals = np.sum(result[c] for c in list(result.columns) if c.startswith("PROPERTY: Metal"))
|