bndl commited on
Commit
e70219a
·
1 Parent(s): 38e5f03

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -4
app.py CHANGED
@@ -145,6 +145,9 @@ def predict_inverse(hardness_original_target, ys_original_target, metals_to_use,
145
  else:
146
  domain.append({'name': str(c), 'type': 'discrete', 'domain': (0,1)})
147
 
 
 
 
148
  # Constraints
149
  constraints = []
150
  constrained_columns = ['Single/Multiphase', 'Preprocessing method', 'BCC/FCC/other'] #'PROPERTY: Metal']#, 'Microstructure']
@@ -156,7 +159,9 @@ def predict_inverse(hardness_original_target, ys_original_target, metals_to_use,
156
  sum_string = sum_string+"+x[:," + str(i) + "]"
157
  constraints.append({'name': constraint + "+1", 'constraint': sum_string + '-1'})
158
  constraints.append({'name': constraint + "-1", 'constraint': '-1*(' + sum_string + ')+1'})
159
-
 
 
160
 
161
  def fit_outputs(x):
162
  return fit_outputs_constraints(x, hardness_target, ys_target, request)
@@ -174,6 +179,8 @@ def predict_inverse(hardness_original_target, ys_original_target, metals_to_use,
174
  [el['name'] for el in domain],
175
  [[x] for x in x_best]))
176
  optimized_x = pd.DataFrame.from_dict(best_params)
 
 
177
  for c in optimized_x.columns:
178
  if c in continuous_variables:
179
  if c in ['PROPERTY: Calculated Density (g/cm$^3$)', 'PROPERTY: Calculated Young modulus (GPa)']:
@@ -181,10 +188,7 @@ def predict_inverse(hardness_original_target, ys_original_target, metals_to_use,
181
  print(optimized_x[c])
182
  optimized_x[c]=round(optimized_x[c]*(scaling_factors[c][1]-scaling_factors[c][0])+scaling_factors[c][0], 2)
183
  result = optimized_x
184
- print(result)
185
  result = result[result>0.0].dropna(axis=1)
186
- print("-------------")
187
- print(result)
188
 
189
  # Normalize metals outputs
190
  sum_metals = np.sum(result[c] for c in list(result.columns) if c.startswith("PROPERTY: Metal"))
 
145
  else:
146
  domain.append({'name': str(c), 'type': 'discrete', 'domain': (0,1)})
147
 
148
+ print("************")
149
+ print("Domain")
150
+ print(domain)
151
  # Constraints
152
  constraints = []
153
  constrained_columns = ['Single/Multiphase', 'Preprocessing method', 'BCC/FCC/other'] #'PROPERTY: Metal']#, 'Microstructure']
 
159
  sum_string = sum_string+"+x[:," + str(i) + "]"
160
  constraints.append({'name': constraint + "+1", 'constraint': sum_string + '-1'})
161
  constraints.append({'name': constraint + "-1", 'constraint': '-1*(' + sum_string + ')+1'})
162
+ print("********************")
163
+ print("Constraints")
164
+ print(constraints)
165
 
166
  def fit_outputs(x):
167
  return fit_outputs_constraints(x, hardness_target, ys_target, request)
 
179
  [el['name'] for el in domain],
180
  [[x] for x in x_best]))
181
  optimized_x = pd.DataFrame.from_dict(best_params)
182
+ print("Optimized parameters")
183
+ print(optimized_x.columns)
184
  for c in optimized_x.columns:
185
  if c in continuous_variables:
186
  if c in ['PROPERTY: Calculated Density (g/cm$^3$)', 'PROPERTY: Calculated Young modulus (GPa)']:
 
188
  print(optimized_x[c])
189
  optimized_x[c]=round(optimized_x[c]*(scaling_factors[c][1]-scaling_factors[c][0])+scaling_factors[c][0], 2)
190
  result = optimized_x
 
191
  result = result[result>0.0].dropna(axis=1)
 
 
192
 
193
  # Normalize metals outputs
194
  sum_metals = np.sum(result[c] for c in list(result.columns) if c.startswith("PROPERTY: Metal"))