Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -23,8 +23,8 @@ scaling_factors = {'PROPERTY: Calculated Density (g/cm$^3$)': (5.5, 13.7),
|
|
23 |
'PROPERTY: HV': (107.0, 1183.0),
|
24 |
'PROPERTY: YS (MPa)': (62.0, 3416.0)}
|
25 |
|
26 |
-
input_mapping = {'PROPERTY: BCC/FCC/other': {'BCC': 0, 'FCC': 1, 'OTHER': 2
|
27 |
-
'PROPERTY: Processing method': {'ANNEAL': 0, 'CAST': 1, 'OTHER': 2, 'POWDER': 3, 'WROUGHT': 4
|
28 |
'PROPERTY: Microstructure': {'B2': 0, 'B2+BCC': 1, 'B2+L12': 2, 'B2+Laves+Sec.': 3, 'B2+Sec.': 4, 'BCC': 5,
|
29 |
'BCC+B2': 6, 'BCC+B2+FCC': 7, 'BCC+B2+FCC+Sec.': 8, 'BCC+B2+L12': 9, 'BCC+B2+Laves': 10,
|
30 |
'BCC+B2+Sec.': 11, 'BCC+BCC': 12, 'BCC+BCC+HCP': 13, 'BCC+BCC+Laves': 14,
|
@@ -34,22 +34,22 @@ input_mapping = {'PROPERTY: BCC/FCC/other': {'BCC': 0, 'FCC': 1, 'OTHER': 2, 'na
|
|
34 |
'FCC+BCC+B2': 28, 'FCC+BCC+B2+Sec.': 29, 'FCC+BCC+BCC': 30, 'FCC+BCC+Sec.': 31,
|
35 |
'FCC+FCC': 32, 'FCC+HCP': 33, 'FCC+HCP+Sec.': 34, 'FCC+L12': 35, 'FCC+L12+B2': 36,
|
36 |
'FCC+L12+Sec.': 37, 'FCC+Laves': 38, 'FCC+Laves(C14)': 39, 'FCC+Laves+Sec.': 40,
|
37 |
-
'FCC+Sec.': 41, 'L12+B2': 42, 'Laves(C14)+Sec.': 43, 'OTHER': 44
|
38 |
-
'PROPERTY: Single/Multiphase': {'': 0, 'M': 1, 'S': 2, 'OTHER': 3
|
39 |
|
40 |
unique_phase_elements = ['B2', 'BCC', 'FCC', 'HCP', 'L12', 'Laves', 'Laves(C14)', 'Laves(C15)', 'Sec.', 'OTHER']
|
41 |
|
42 |
input_cols = {
|
43 |
"PROPERTY: Alloy formula": "(PROPERTY: Alloy formula) "
|
44 |
-
"
|
45 |
"PROPERTY: Single/Multiphase": "(PROPERTY: Single/Multiphase) "
|
46 |
-
"
|
47 |
"PROPERTY: BCC/FCC/other": "(PROPERTY: BCC/FCC/other) "
|
48 |
-
"
|
49 |
"PROPERTY: Processing method": "(PROPERTY: Processing method) "
|
50 |
-
"
|
51 |
"PROPERTY: Microstructure": "(PROPERTY: Microstructure) "
|
52 |
-
"
|
53 |
}
|
54 |
|
55 |
def process_microstructure(list_phases):
|
@@ -64,34 +64,25 @@ def write_logs(message, message_type="Prediction"):
|
|
64 |
"""
|
65 |
Write logs
|
66 |
"""
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
print(message)
|
74 |
return
|
75 |
-
|
76 |
-
def fit_outputs(x, hardness_target, ys_target):
|
77 |
-
predictions = predict(x)[0]
|
78 |
-
error_hardness = np.sqrt(np.square(predictions[0]-hardness_target))
|
79 |
-
error_ys = np.sqrt(np.square(predictions[1]-ys_target))
|
80 |
-
print(predictions, hardness_target, ys_target, error_hardness, error_ys)
|
81 |
-
return error_hardness + error_ys
|
82 |
-
|
83 |
-
|
84 |
def predict(x, request: gr.Request):
|
85 |
"""
|
86 |
Predict the hardness and yield strength using the ML model. Input data is a dataframe
|
87 |
"""
|
88 |
-
loaded_model = tf.keras.models.load_model("
|
89 |
print("summary is", loaded_model.summary())
|
90 |
x = x.replace("", 0)
|
91 |
x = np.asarray(x).astype("float32")
|
92 |
y = loaded_model.predict(x)
|
93 |
y_hardness = y[0][0]
|
94 |
-
|
95 |
minimum_hardness, maximum_hardness = scaling_factors['PROPERTY: HV']
|
96 |
minimum_ys, maximum_ys = scaling_factors['PROPERTY: YS (MPa)']
|
97 |
print("Prediction is ", y)
|
@@ -100,9 +91,9 @@ def predict(x, request: gr.Request):
|
|
100 |
print("MESSAGE")
|
101 |
print(message)
|
102 |
res = write_logs(message)
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
|
107 |
|
108 |
def predict_from_tuple(in1, in2, in3, in4, in5, request: gr.Request):
|
@@ -142,9 +133,8 @@ def predict_from_tuple(in1, in2, in3, in4, in5, request: gr.Request):
|
|
142 |
input_df = pd.DataFrame.from_dict(input_dict)
|
143 |
one_hot = utils.turn_into_one_hot(input_df, input_mapping)
|
144 |
print("One hot columns are ", one_hot.columns)
|
145 |
-
# return predict(input_df, request)
|
146 |
return predict(one_hot, request)
|
147 |
-
|
148 |
|
149 |
def predict_inverse(target_hardness, target_yield_strength, request: gr.Request):
|
150 |
|
|
|
23 |
'PROPERTY: HV': (107.0, 1183.0),
|
24 |
'PROPERTY: YS (MPa)': (62.0, 3416.0)}
|
25 |
|
26 |
+
input_mapping = {'PROPERTY: BCC/FCC/other': {'BCC': 0, 'FCC': 1, 'OTHER': 2},#, 'nan': 2},
|
27 |
+
'PROPERTY: Processing method': {'ANNEAL': 0, 'CAST': 1, 'OTHER': 2, 'POWDER': 3, 'WROUGHT': 4},#, 'nan': 2},
|
28 |
'PROPERTY: Microstructure': {'B2': 0, 'B2+BCC': 1, 'B2+L12': 2, 'B2+Laves+Sec.': 3, 'B2+Sec.': 4, 'BCC': 5,
|
29 |
'BCC+B2': 6, 'BCC+B2+FCC': 7, 'BCC+B2+FCC+Sec.': 8, 'BCC+B2+L12': 9, 'BCC+B2+Laves': 10,
|
30 |
'BCC+B2+Sec.': 11, 'BCC+BCC': 12, 'BCC+BCC+HCP': 13, 'BCC+BCC+Laves': 14,
|
|
|
34 |
'FCC+BCC+B2': 28, 'FCC+BCC+B2+Sec.': 29, 'FCC+BCC+BCC': 30, 'FCC+BCC+Sec.': 31,
|
35 |
'FCC+FCC': 32, 'FCC+HCP': 33, 'FCC+HCP+Sec.': 34, 'FCC+L12': 35, 'FCC+L12+B2': 36,
|
36 |
'FCC+L12+Sec.': 37, 'FCC+Laves': 38, 'FCC+Laves(C14)': 39, 'FCC+Laves+Sec.': 40,
|
37 |
+
'FCC+Sec.': 41, 'L12+B2': 42, 'Laves(C14)+Sec.': 43, 'OTHER': 44},#, 'nan': 44},
|
38 |
+
'PROPERTY: Single/Multiphase': {'': 0, 'M': 1, 'S': 2, 'OTHER': 3}}#, 'nan': 3}}
|
39 |
|
40 |
unique_phase_elements = ['B2', 'BCC', 'FCC', 'HCP', 'L12', 'Laves', 'Laves(C14)', 'Laves(C15)', 'Sec.', 'OTHER']
|
41 |
|
42 |
input_cols = {
|
43 |
"PROPERTY: Alloy formula": "(PROPERTY: Alloy formula) "
|
44 |
+
"Enter alloy formula using proportions representation (i.e. Al0.25 Co1 Fe1 Ni1)",
|
45 |
"PROPERTY: Single/Multiphase": "(PROPERTY: Single/Multiphase) "
|
46 |
+
"Choose between Single (S), Multiphase (M) and other (OTHER)",
|
47 |
"PROPERTY: BCC/FCC/other": "(PROPERTY: BCC/FCC/other) "
|
48 |
+
"Choose between BCC, FCC and other ",
|
49 |
"PROPERTY: Processing method": "(PROPERTY: Processing method) "
|
50 |
+
"Choose your processing method (ANNEAL, CAST, POWDER, WROUGHT or OTHER)",
|
51 |
"PROPERTY: Microstructure": "(PROPERTY: Microstructure) "
|
52 |
+
"Choose the microstructure (SEC means the secondary/tertiary microstructure is not one of FCC, BCC, HCP, L12, B2, Laves, Laves (C14), Laves (C15))",
|
53 |
}
|
54 |
|
55 |
def process_microstructure(list_phases):
|
|
|
64 |
"""
|
65 |
Write logs
|
66 |
"""
|
67 |
+
with Repository(local_dir="data", clone_from=dataset_url, use_auth_token=WRITE_TOKEN).commit(commit_message="from private", blocking=False):
|
68 |
+
with open(dataset_path, "a") as csvfile:
|
69 |
+
writer = csv.DictWriter(csvfile, fieldnames=["name", "message", "time"])
|
70 |
+
writer.writerow(
|
71 |
+
{"name": message_type, "message": message, "time": str(datetime.now())}
|
72 |
+
)
|
|
|
73 |
return
|
74 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
def predict(x, request: gr.Request):
|
76 |
"""
|
77 |
Predict the hardness and yield strength using the ML model. Input data is a dataframe
|
78 |
"""
|
79 |
+
loaded_model = tf.keras.models.load_model("hardness.h5")
|
80 |
print("summary is", loaded_model.summary())
|
81 |
x = x.replace("", 0)
|
82 |
x = np.asarray(x).astype("float32")
|
83 |
y = loaded_model.predict(x)
|
84 |
y_hardness = y[0][0]
|
85 |
+
y_ys = y[0][1]
|
86 |
minimum_hardness, maximum_hardness = scaling_factors['PROPERTY: HV']
|
87 |
minimum_ys, maximum_ys = scaling_factors['PROPERTY: YS (MPa)']
|
88 |
print("Prediction is ", y)
|
|
|
91 |
print("MESSAGE")
|
92 |
print(message)
|
93 |
res = write_logs(message)
|
94 |
+
interpret_fig = utils.interpret(x)
|
95 |
+
return (round(y_hardness*(maximum_hardness-minimum_hardness)+minimum_hardness, 2), 12,
|
96 |
+
round(y_ys*(maximum_ys-minimum_ys)+minimum_ys, 2), 12, interpret_fig)
|
97 |
|
98 |
|
99 |
def predict_from_tuple(in1, in2, in3, in4, in5, request: gr.Request):
|
|
|
133 |
input_df = pd.DataFrame.from_dict(input_dict)
|
134 |
one_hot = utils.turn_into_one_hot(input_df, input_mapping)
|
135 |
print("One hot columns are ", one_hot.columns)
|
|
|
136 |
return predict(one_hot, request)
|
137 |
+
|
138 |
|
139 |
def predict_inverse(target_hardness, target_yield_strength, request: gr.Request):
|
140 |
|