snajmark commited on
Commit
f8787cc
·
1 Parent(s): ba46d59

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -4
app.py CHANGED
@@ -106,7 +106,9 @@ def fit_outputs_constraints(x, hardness_target, ys_target, metals_to_use, reques
106
 
107
  def predict_inverse(hardness_original_target, ys_original_target, request: gr.Request):
108
 
109
- #one_hot_columns = utils.return_feature_names()
 
 
110
 
111
  hardness_target = (hardness_original_target-min_df_hardness)/(max_df_hardness-min_df_hardness)
112
  ys_target = (ys_original_target-min_df_ys)/(max_df_ys-min_df_ys)
@@ -121,7 +123,7 @@ def predict_inverse(hardness_original_target, ys_original_target, request: gr.Re
121
  'PROPERTY: Metal Hf', 'PROPERTY: Metal W', 'PROPERTY: Metal Zn',
122
  'PROPERTY: Metal Sn', 'PROPERTY: Metal Re', 'PROPERTY: Metal C',
123
  'PROPERTY: Metal Pd', 'PROPERTY: Metal Sc', 'PROPERTY: Metal Y']
124
- categorical_variables = list(one_hot.columns)
125
  for c in continuous_variables:
126
  categorical_variables.remove(c)
127
 
@@ -146,8 +148,8 @@ def predict_inverse(hardness_original_target, ys_original_target, request: gr.Re
146
  constrained_columns = ['Single/Multiphase', 'Preprocessing method', 'BCC/FCC/other'] #'PROPERTY: Metal']#, 'Microstructure']
147
  for constraint in constrained_columns:
148
  sum_string = ''
149
- for i in range (len(one_hot.columns)):
150
- column_one_hot = one_hot.columns[i]
151
  if column_one_hot.startswith(constraint):
152
  sum_string = sum_string+"+x[:," + str(i) + "]"
153
  constraints.append({'name': constraint + "+1", 'constraint': sum_string + '-1'})
 
106
 
107
  def predict_inverse(hardness_original_target, ys_original_target, request: gr.Request):
108
 
109
+ one_hot_columns = utils.return_feature_names()
110
+ min_df_hardness, max_df_hardness = scaling_factors["PROPERTY: HV"]
111
+ min_df_hardness, max_df_hardness = scaling_factors["PROPERTY: YS (MPa)"]
112
 
113
  hardness_target = (hardness_original_target-min_df_hardness)/(max_df_hardness-min_df_hardness)
114
  ys_target = (ys_original_target-min_df_ys)/(max_df_ys-min_df_ys)
 
123
  'PROPERTY: Metal Hf', 'PROPERTY: Metal W', 'PROPERTY: Metal Zn',
124
  'PROPERTY: Metal Sn', 'PROPERTY: Metal Re', 'PROPERTY: Metal C',
125
  'PROPERTY: Metal Pd', 'PROPERTY: Metal Sc', 'PROPERTY: Metal Y']
126
+ categorical_variables = list(one_hot_columns)
127
  for c in continuous_variables:
128
  categorical_variables.remove(c)
129
 
 
148
  constrained_columns = ['Single/Multiphase', 'Preprocessing method', 'BCC/FCC/other'] #'PROPERTY: Metal']#, 'Microstructure']
149
  for constraint in constrained_columns:
150
  sum_string = ''
151
+ for i in range (len(one_hot_columns)):
152
+ column_one_hot = one_hot_columns[i]
153
  if column_one_hot.startswith(constraint):
154
  sum_string = sum_string+"+x[:," + str(i) + "]"
155
  constraints.append({'name': constraint + "+1", 'constraint': sum_string + '-1'})