import os
import csv
import gradio as gr
import tensorflow as tf
import numpy as np
import pandas as pd
from datetime import datetime
import utils
from huggingface_hub import Repository
import itertools
# Unique phase elements
# Load access tokens
WRITE_TOKEN = os.environ.get("WRITE_PER") # write
# Logs repo path
dataset_url = "https://huggingface.co/datasets/sandl/upload_alloy_hardness"
dataset_path = "logs_alloy_hardness.csv"
scaling_factors = {'PROPERTY: Calculated Density (g/cm$^3$)': (5.5, 13.7),
'PROPERTY: Calculated Young modulus (GPa)': (77.0, 336.0),
'PROPERTY: HV': (107.0, 1183.0),
'PROPERTY: YS (MPa)': (62.0, 3416.0)}
input_mapping = {'PROPERTY: BCC/FCC/other': {'BCC': 0, 'FCC': 1, 'OTHER': 2, 'nan': 2},
'PROPERTY: Processing method': {'ANNEAL': 0, 'CAST': 1, 'OTHER': 2, 'POWDER': 3, 'WROUGHT': 4, 'nan': 2},
'PROPERTY: Microstructure': {'B2': 0, 'B2+BCC': 1, 'B2+L12': 2, 'B2+Laves+Sec.': 3, 'B2+Sec.': 4, 'BCC': 5,
'BCC+B2': 6, 'BCC+B2+FCC': 7, 'BCC+B2+FCC+Sec.': 8, 'BCC+B2+L12': 9, 'BCC+B2+Laves': 10,
'BCC+B2+Sec.': 11, 'BCC+BCC': 12, 'BCC+BCC+HCP': 13, 'BCC+BCC+Laves': 14,
'BCC+BCC+Laves(C14)': 15, 'BCC+BCC+Laves(C15)': 16, 'BCC+FCC': 17, 'BCC+HCP': 18,
'BCC+Laves': 19, 'BCC+Laves(C14)': 20, 'BCC+Laves(C15)': 21, 'BCC+Laves+Sec.': 22,
'BCC+Sec.': 23, 'FCC': 24, 'FCC+B2': 25, 'FCC+B2+Sec.': 26, 'FCC+BCC': 27,
'FCC+BCC+B2': 28, 'FCC+BCC+B2+Sec.': 29, 'FCC+BCC+BCC': 30, 'FCC+BCC+Sec.': 31,
'FCC+FCC': 32, 'FCC+HCP': 33, 'FCC+HCP+Sec.': 34, 'FCC+L12': 35, 'FCC+L12+B2': 36,
'FCC+L12+Sec.': 37, 'FCC+Laves': 38, 'FCC+Laves(C14)': 39, 'FCC+Laves+Sec.': 40,
'FCC+Sec.': 41, 'L12+B2': 42, 'Laves(C14)+Sec.': 43, 'OTHER': 44, 'nan': 44},
'PROPERTY: Single/Multiphase': {'': 0, 'M': 1, 'S': 2, 'OTHER': 3, 'nan': 3}}
unique_phase_elements = ['B2', 'BCC', 'FCC', 'HCP', 'L12', 'Laves', 'Laves(C14)', 'Laves(C15)', 'Sec.', 'OTHER']
input_cols = {
"PROPERTY: Alloy formula": "(PROPERTY: Alloy formula) "
"Recommended alloy formula using proportions representation (i.e. Al0.25 Co1 Fe1 Ni1)",
"PROPERTY: Single/Multiphase": "(PROPERTY: Single/Multiphase) "
"Recommended between Single (S), Multiphase (M) and other (OTHER)",
"PROPERTY: BCC/FCC/other": "(PROPERTY: BCC/FCC/other) "
"Recommended microstructure between BCC, FCC and other ",
"PROPERTY: Processing method": "(PROPERTY: Processing method) "
"Recommended processing method (ANNEAL, CAST, POWDER, WROUGHT or OTHER)",
"PROPERTY: Microstructure": "(PROPERTY: Microstructure) "
"Recommended microstructure (SEC means the secondary/tertiary microstructure is not one of FCC, BCC, HCP, L12, B2, Laves, Laves (C14), Laves (C15))",
}
def process_microstructure(list_phases):
permutations = list(itertools.permutations(list_phases))
permutations_strings = [str('+'.join(list(e))) for e in permutations]
for e in permutations_strings:
if e in list(input_mapping['PROPERTY: Microstructure'].keys()):
return e
return 'OTHER'
def write_logs(message, message_type="Prediction"):
"""
Write logs
"""
# with Repository(local_dir="data", clone_from=dataset_url, use_auth_token=WRITE_TOKEN).commit(commit_message="from private", blocking=False):
# with open(dataset_path, "a") as csvfile:
# writer = csv.DictWriter(csvfile, fieldnames=["name", "message", "time"])
# writer.writerow(
# {"name": message_type, "message": message, "time": str(datetime.now())}
# )
print(message)
return
def fit_outputs(x, hardness_target, ys_target):
predictions = predict(x)[0]
error_hardness = np.sqrt(np.square(predictions[0]-hardness_target))
error_ys = np.sqrt(np.square(predictions[1]-ys_target))
print(predictions, hardness_target, ys_target, error_hardness, error_ys)
return error_hardness + error_ys
def predict(x, request: gr.Request):
"""
Predict the hardness and yield strength using the ML model. Input data is a dataframe
"""
loaded_model = tf.keras.models.load_model("models/hardness_old.h5")
print("summary is", loaded_model.summary())
x = x.replace("", 0)
x = np.asarray(x).astype("float32")
y = loaded_model.predict(x)
y_hardness = y[0][0]
# y_ys = y[0][1]
minimum_hardness, maximum_hardness = scaling_factors['PROPERTY: HV']
minimum_ys, maximum_ys = scaling_factors['PROPERTY: YS (MPa)']
print("Prediction is ", y)
if request is not None: # Verify if request is not None (when building the app the first request is None)
message = f"{request.username}_{request.client.host}"
print("MESSAGE")
print(message)
res = write_logs(message)
interpret_fig_hardness, fig2 = utils.interpret(x)
#interpret_fig_ys = utils.interpret(x, 1)
return (np.round(y_hardness*(maximum_hardness-minimum_hardness)+minimum_hardness, 2), 12, interpret_fig_hardness)
def predict_from_tuple(in1, in2, in3, in4, in5, request: gr.Request):
"""
Predict the hardness using the ML model. Input data is a tuple. Input order should be the same as the cols list
"""
input_tuple = (in1, in2, in3, in4, in5)
formula = utils.normalize_and_alphabetize_formula(in1)
density = utils.calculate_density(formula)
young_modulus = utils.calculate_youngs_modulus(formula)
input_dict = {}
in2 = input_mapping['PROPERTY: Single/Multiphase'][str(in2)]
input_dict['PROPERTY: Single/Multiphase'] = [int(in2)]
in3 = input_mapping['PROPERTY: BCC/FCC/other'][str(in3)]
input_dict['PROPERTY: BCC/FCC/other'] = [int(in3)]
in4 = input_mapping['PROPERTY: Processing method'][str(in4)]
input_dict['PROPERTY: Processing method'] = [int(in4)]
in5 = process_microstructure(in5)
in5 = input_mapping['PROPERTY: Microstructure'][in5]
input_dict['PROPERTY: Microstructure'] = [int(in5)]
density_scaling_factors = scaling_factors['PROPERTY: Calculated Density (g/cm$^3$)']
density = (density-density_scaling_factors[0])/(
density_scaling_factors[1]-density_scaling_factors[0])
input_dict['PROPERTY: Calculated Density (g/cm$^3$)'] = [float(density)]
ym_scaling_factors = scaling_factors['PROPERTY: Calculated Young modulus (GPa)']
young_modulus = (young_modulus-ym_scaling_factors[0])/(
ym_scaling_factors[1]-ym_scaling_factors[0])
input_dict['PROPERTY: Calculated Young modulus (GPa)'] = [float(young_modulus)]
input_df = pd.DataFrame.from_dict(input_dict)
one_hot = utils.turn_into_one_hot(input_df, input_mapping)
print("One hot columns are ", one_hot.columns)
# return predict(input_df, request)
return predict(one_hot, request)
def predict_inverse(target_hardness, target_yield_strength, request: gr.Request):
continuous_variables = ['PROPERTY: Calculated Density (g/cm$^3$)',
'PROPERTY: Calculated Young modulus (GPa)']
categorical_variables = list(one_hot.columns)
for c in continuous_variables:
categorical_variables.remove(c)
domain = []
for c in one_hot.columns:
if c in continuous_variables:
if c == continuous_variables[0]:
domain.append({'name': str(c), 'type': 'continuous', 'domain': (0.528, 0.528)})#(0.,1.)})
else:
domain.append({'name': str(c), 'type': 'continuous', 'domain': (0.539, 0.539)})#(0.,1.)})
else:
domain.append({'name': str(c), 'type': 'discrete', 'domain': (0,1)})
constraints = []
constrained_columns = ['Single/Multiphase', 'Preprocessing method', 'BCC/FCC/other']#, 'Microstructure']
for constraint in constrained_columns:
sum_string = ''
for i in range (len(one_hot.columns)):
column_one_hot = one_hot.columns[i]
if column_one_hot.startswith(constraint):
sum_string = sum_string+"+x[:," + str(i) + "]"
constraints.append({'name': constraint + "+1", 'constraint': sum_string + '-1'})
constraints.append({'name': constraint + "-1", 'constraint': '-1*(' + sum_string + ')+1'})
opt = GPyOpt.methods.BayesianOptimization(f = fit_outputs, # function to optimize
domain = domain, # box-constraints of the problem
constraints = constraints,
acquisition_type ='LCB', # LCB acquisition
acquisition_weight = 0.1) # Exploration exploitation
# it may take a few seconds
opt.run_optimization(max_iter=50)
opt.plot_convergence()
x_best = opt.X[np.argmin(opt.Y)]
best_params = dict(zip(
[el['name'] for el in domain],
[[x] for x in x_best]))
optimized_x = pd.DataFrame.from_dict(best_params)
for c in optimized_x.columns:
if c in continuous_variables:
optimized_x[c]=optimized_x[c]*(dictionary[c][1]-dictionary[c][0])+dictionary[c][0]
optimized_x = optimized_x[['PROPERTY: Calculated Density (g/cm$^3$)',
'PROPERTY: Calculated Young modulus (GPa)',
'Preprocessing method ANNEAL',
'Preprocessing method CAST', 'Preprocessing method OTHER',
'Preprocessing method POWDER', 'Preprocessing method WROUGHT',
'BCC/FCC/other BCC', 'BCC/FCC/other FCC', 'BCC/FCC/other OTHER',
'Single/Multiphase ', 'Single/Multiphase M', 'Single/Multiphase S']]
result = optimized_x
result = result[result>0.0].dropna(axis=1)
return result
example_inputs = [420, 10]
css_styling = """#submit {background: #1eccd8}
submit {color: white}
.output-image, .input-image, .image-preview {height: 250px !important}
.output-plot {height: 250px !important}"""
new_blue_color = gr.themes.Color(c50="#FFFFFF", # Dataframe background cell content - light mode only
c100="#0c1538", # Text of markdown (headers) and componnet contencts
c200="#000000", # Text of component headers
c300="#a1c6db", # Login button when used in primary color
c400="#000000", # Text of "or" objects and footer
c500="#000000", # Text of component headers in light mode only
c600="#e4f3fa", # Clear button (gradient between c600 and c700 + mouse over)
c700="#a1c6db", # Componennt borders
c800="#e4f3fa", # Background of components
c900="#a1c6db", # Etiquette of components
c950="#FFFFFF") # Background
# secondary color used for highlight box content when typing in light mode, and download option in dark mode
# primary color used for login button in dark mode
osium_theme = gr.themes.Default(primary_hue="cyan", secondary_hue="cyan", neutral_hue=new_blue_color)
page_title = "Alloys' hardness and yield strength prediction"
favicon_path = "osiumai_favicon.ico"
logo_path = "osiumai_logo.jpg"
html = f"""
"""
with gr.Blocks(css=css_styling, title=page_title, theme=osium_theme) as demo:
gr.HTML(html)
gr.Markdown("#
Get optimal alloy recommendations based on your target performance
") gr.Markdown("This AI model provides a recommended alloy formula, microstructure and processing conditions based on your target hardness and yield strength") with gr.Row(): clear_button = gr.Button("Clear") prediction_button = gr.Button("Predict", elem_id="submit") with gr.Row(): with gr.Column(): gr.Markdown("### The target performance of your alloy") input_hardness = gr.Text(label="Enter your target hardness (in HV)") input_yield_strength = gr.Text(label="Enter your target yield strength (MPa)") with gr.Column(): gr.Markdown("### Your optimal formulation and processing conditions") output_formula = gr.Textbox( lines=1, label=input_cols["PROPERTY: Alloy formula"] ) output_phase = gr.Dropdown( choices=list(input_mapping["PROPERTY: Single/Multiphase"].keys()), label=input_cols["PROPERTY: Single/Multiphase"], ) output_bccfcc = gr.Dropdown( choices=list(input_mapping["PROPERTY: BCC/FCC/other"].keys()), label=input_cols["PROPERTY: BCC/FCC/other"], ) output_processing = gr.Dropdown( choices=list(input_mapping["PROPERTY: Processing method"].keys()), label=input_cols["PROPERTY: Processing method"], ) output_microstructure = gr.CheckboxGroup( choices=unique_phase_elements, #list(input_mapping["PROPERTY: Microstructure"].keys()), label=input_cols["PROPERTY: Microstructure"], ) optimal_parameters = gr.DataFrame(label="Optimal parameters") # with gr.Column(): # gr.Markdown("### Your alloy's yield strength (MPa)") # output_ys = gr.Text(label="Yield Strength (MPa)") # output_ys_uncertainty = gr.Text(label="Yield strength uncertainty (%)") # output_ys_interpretation = gr.Plot(label="Yield strength interpretation") with gr.Row(): gr.Examples([example_inputs], [input_hardness, input_yield_strength]) prediction_button.click( fn=predict_inverse, inputs=[input_hardness, input_yield_strength], outputs=[ optimal_parameters ], show_progress=True, ) clear_button.click( lambda x: [gr.update(value=None)] * 8, [], [ output_formula, output_phase, output_bccfcc, output_processing, output_microstructure, input_hardness, input_yield_strength, ], ) if __name__ == "__main__": demo.queue(concurrency_count=2) demo.launch()