File size: 13,441 Bytes
4f5540c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
import os
import os.path as osp
import warnings
from math import pi as PI
from typing import Optional
import numpy as np
import torch
import torch.nn.functional as F
from torch.nn import Embedding, Linear, ModuleList, Sequential
from torch_scatter import scatter
from torch_geometric.data import Dataset, download_url, extract_zip
from torch_geometric.data.makedirs import makedirs
from torch_geometric.nn import MessagePassing, radius_graph
qm9_target_dict = {
0: 'dipole_moment',
1: 'isotropic_polarizability',
2: 'homo',
3: 'lumo',
4: 'gap',
5: 'electronic_spatial_extent',
6: 'zpve',
7: 'energy_U0',
8: 'energy_U',
9: 'enthalpy_H',
10: 'free_energy',
11: 'heat_capacity',
}
class SchNet(torch.nn.Module):
r"""The continuous-filter convolutional neural network SchNet from the
`"SchNet: A Continuous-filter Convolutional Neural Network for Modeling
Quantum Interactions" <https://arxiv.org/abs/1706.08566>`_ paper that uses
the interactions blocks of the form
.. math::
\mathbf{x}^{\prime}_i = \sum_{j \in \mathcal{N}(i)} \mathbf{x}_j \odot
h_{\mathbf{\Theta}} ( \exp(-\gamma(\mathbf{e}_{j,i} - \mathbf{\mu}))),
here :math:`h_{\mathbf{\Theta}}` denotes an MLP and
:math:`\mathbf{e}_{j,i}` denotes the interatomic distances between atoms.
.. note::
For an example of using a pretrained SchNet variant, see
`examples/qm9_pretrained_schnet.py
<https://github.com/pyg-team/pytorch_geometric/blob/master/examples/
qm9_pretrained_schnet.py>`_.
Args:
hidden_channels (int, optional): Hidden embedding size.
(default: :obj:`128`)
num_filters (int, optional): The number of filters to use.
(default: :obj:`128`)
num_interactions (int, optional): The number of interaction blocks.
(default: :obj:`6`)
num_gaussians (int, optional): The number of gaussians :math:`\mu`.
(default: :obj:`50`)
cutoff (float, optional): Cutoff distance for interatomic interactions.
(default: :obj:`10.0`)
max_num_neighbors (int, optional): The maximum number of neighbors to
collect for each node within the :attr:`cutoff` distance.
(default: :obj:`32`)
readout (string, optional): Whether to apply :obj:`"add"` or
:obj:`"mean"` global aggregation. (default: :obj:`"add"`)
dipole (bool, optional): If set to :obj:`True`, will use the magnitude
of the dipole moment to make the final prediction, *e.g.*, for
target 0 of :class:`torch_geometric.datasets.QM9`.
(default: :obj:`False`)
mean (float, optional): The mean of the property to predict.
(default: :obj:`None`)
std (float, optional): The standard deviation of the property to
predict. (default: :obj:`None`)
atomref (torch.Tensor, optional): The reference of single-atom
properties.
Expects a vector of shape :obj:`(max_atomic_number, )`.
get_embedding (bool, optional): If true, forward outputs an embedding
rather than singular value
"""
url = 'http://www.quantum-machine.org/datasets/trained_schnet_models.zip'
def __init__(self, hidden_channels: int = 128, num_filters: int = 128,
num_interactions: int = 6, num_gaussians: int = 50,
cutoff: float = 10.0, max_num_neighbors: int = 32,
readout: str = 'add', dipole: bool = False,
mean: Optional[float] = None, std: Optional[float] = None,
atomref: Optional[torch.Tensor] = None, get_embedding = False):
super().__init__()
import ase
self.hidden_channels = hidden_channels
self.num_filters = num_filters
self.num_interactions = num_interactions
self.num_gaussians = num_gaussians
self.cutoff = cutoff
self.max_num_neighbors = max_num_neighbors
self.readout = readout
self.dipole = dipole
self.readout = 'add' if self.dipole else self.readout
self.mean = mean
self.std = std
self.scale = None
self.get_embedding = get_embedding
atomic_mass = torch.from_numpy(ase.data.atomic_masses)
self.register_buffer('atomic_mass', atomic_mass)
self.embedding = Embedding(100, hidden_channels)
self.distance_expansion = GaussianSmearing(0.0, cutoff, num_gaussians)
self.interactions = ModuleList()
for _ in range(num_interactions):
block = InteractionBlock(hidden_channels, num_gaussians,
num_filters, cutoff)
self.interactions.append(block)
self.lin1 = Linear(hidden_channels, hidden_channels // 2)
self.act = ShiftedSoftplus()
self.lin2 = Linear(hidden_channels // 2, 1)
self.register_buffer('initial_atomref', atomref)
self.atomref = None
if atomref is not None:
self.atomref = Embedding(100, 1)
self.atomref.weight.data.copy_(atomref)
self.reset_parameters()
def reset_parameters(self):
self.embedding.reset_parameters()
for interaction in self.interactions:
interaction.reset_parameters()
torch.nn.init.xavier_uniform_(self.lin1.weight)
self.lin1.bias.data.fill_(0)
torch.nn.init.xavier_uniform_(self.lin2.weight)
self.lin2.bias.data.fill_(0)
if self.atomref is not None:
self.atomref.weight.data.copy_(self.initial_atomref)
@staticmethod
def from_qm9_pretrained(root: str, dataset: Dataset, target: int):
import ase
import schnetpack as spk # noqa
assert target >= 0 and target <= 12
units = [1] * 12
units[0] = ase.units.Debye
units[1] = ase.units.Bohr**3
units[5] = ase.units.Bohr**2
root = osp.expanduser(osp.normpath(root))
makedirs(root)
folder = 'trained_schnet_models'
if not osp.exists(osp.join(root, folder)):
path = download_url(SchNet.url, root)
extract_zip(path, root)
os.unlink(path)
name = f'qm9_{qm9_target_dict[target]}'
path = osp.join(root, 'trained_schnet_models', name, 'split.npz')
split = np.load(path)
train_idx = split['train_idx']
val_idx = split['val_idx']
test_idx = split['test_idx']
# Filter the splits to only contain characterized molecules.
idx = dataset.data.idx
assoc = idx.new_empty(idx.max().item() + 1)
assoc[idx] = torch.arange(idx.size(0))
train_idx = assoc[train_idx[np.isin(train_idx, idx)]]
val_idx = assoc[val_idx[np.isin(val_idx, idx)]]
test_idx = assoc[test_idx[np.isin(test_idx, idx)]]
path = osp.join(root, 'trained_schnet_models', name, 'best_model')
with warnings.catch_warnings():
warnings.simplefilter('ignore')
state = torch.load(path, map_location='cpu')
net = SchNet(hidden_channels=128, num_filters=128, num_interactions=6,
num_gaussians=50, cutoff=10.0,
atomref=dataset.atomref(target))
net.embedding.weight = state.representation.embedding.weight
for int1, int2 in zip(state.representation.interactions,
net.interactions):
int2.mlp[0].weight = int1.filter_network[0].weight
int2.mlp[0].bias = int1.filter_network[0].bias
int2.mlp[2].weight = int1.filter_network[1].weight
int2.mlp[2].bias = int1.filter_network[1].bias
int2.lin.weight = int1.dense.weight
int2.lin.bias = int1.dense.bias
int2.conv.lin1.weight = int1.cfconv.in2f.weight
int2.conv.lin2.weight = int1.cfconv.f2out.weight
int2.conv.lin2.bias = int1.cfconv.f2out.bias
net.lin1.weight = state.output_modules[0].out_net[1].out_net[0].weight
net.lin1.bias = state.output_modules[0].out_net[1].out_net[0].bias
net.lin2.weight = state.output_modules[0].out_net[1].out_net[1].weight
net.lin2.bias = state.output_modules[0].out_net[1].out_net[1].bias
mean = state.output_modules[0].atom_pool.average
net.readout = 'mean' if mean is True else 'add'
dipole = state.output_modules[0].__class__.__name__ == 'DipoleMoment'
net.dipole = dipole
net.mean = state.output_modules[0].standardize.mean.item()
net.std = state.output_modules[0].standardize.stddev.item()
if state.output_modules[0].atomref is not None:
net.atomref.weight = state.output_modules[0].atomref.weight
else:
net.atomref = None
net.scale = 1. / units[target]
return net, (dataset[train_idx], dataset[val_idx], dataset[test_idx])
def forward(self, z, pos, batch=None):
""""""
assert z.dim() == 1 and z.dtype == torch.long
batch = torch.zeros_like(z) if batch is None else batch
#print('batch', batch)
h = self.embedding(z)
edge_index = radius_graph(pos, r=self.cutoff, batch=batch,
max_num_neighbors=self.max_num_neighbors)
row, col = edge_index
edge_weight = (pos[row] - pos[col]).norm(dim=-1)
edge_attr = self.distance_expansion(edge_weight)
for interaction in self.interactions:
h = h + interaction(h, edge_index, edge_weight, edge_attr)
h = self.lin1(h)
h = self.act(h)
if self.get_embedding:
return h
# h is vector after activation
h = self.lin2(h)
if self.dipole:
# Get center of mass.
mass = self.atomic_mass[z].view(-1, 1)
c = scatter(mass * pos, batch, dim=0) / scatter(mass, batch, dim=0)
h = h * (pos - c.index_select(0, batch))
if not self.dipole and self.mean is not None and self.std is not None:
h = h * self.std + self.mean
if not self.dipole and self.atomref is not None:
h = h + self.atomref(z)
out = scatter(h, batch, dim=0, reduce=self.readout)
if self.dipole:
out = torch.norm(out, dim=-1, keepdim=True)
if self.scale is not None:
out = self.scale * out
return out
def __repr__(self):
return (f'{self.__class__.__name__}('
f'hidden_channels={self.hidden_channels}, '
f'num_filters={self.num_filters}, '
f'num_interactions={self.num_interactions}, '
f'num_gaussians={self.num_gaussians}, '
f'cutoff={self.cutoff})')
class InteractionBlock(torch.nn.Module):
def __init__(self, hidden_channels, num_gaussians, num_filters, cutoff):
super().__init__()
self.mlp = Sequential(
Linear(num_gaussians, num_filters),
ShiftedSoftplus(),
Linear(num_filters, num_filters),
)
self.conv = CFConv(hidden_channels, hidden_channels, num_filters,
self.mlp, cutoff)
self.act = ShiftedSoftplus()
self.lin = Linear(hidden_channels, hidden_channels)
self.reset_parameters()
def reset_parameters(self):
torch.nn.init.xavier_uniform_(self.mlp[0].weight)
self.mlp[0].bias.data.fill_(0)
torch.nn.init.xavier_uniform_(self.mlp[2].weight)
self.mlp[2].bias.data.fill_(0)
self.conv.reset_parameters()
torch.nn.init.xavier_uniform_(self.lin.weight)
self.lin.bias.data.fill_(0)
def forward(self, x, edge_index, edge_weight, edge_attr):
x = self.conv(x, edge_index, edge_weight, edge_attr)
x = self.act(x)
x = self.lin(x)
return x
class CFConv(MessagePassing):
def __init__(self, in_channels, out_channels, num_filters, nn, cutoff):
super().__init__(aggr='add')
self.lin1 = Linear(in_channels, num_filters, bias=False)
self.lin2 = Linear(num_filters, out_channels)
self.nn = nn
self.cutoff = cutoff
self.reset_parameters()
def reset_parameters(self):
torch.nn.init.xavier_uniform_(self.lin1.weight)
torch.nn.init.xavier_uniform_(self.lin2.weight)
self.lin2.bias.data.fill_(0)
def forward(self, x, edge_index, edge_weight, edge_attr):
C = 0.5 * (torch.cos(edge_weight * PI / self.cutoff) + 1.0)
W = self.nn(edge_attr) * C.view(-1, 1)
x = self.lin1(x)
x = self.propagate(edge_index, x=x, W=W)
x = self.lin2(x)
return x
def message(self, x_j, W):
return x_j * W
class GaussianSmearing(torch.nn.Module):
def __init__(self, start=0.0, stop=5.0, num_gaussians=50):
super().__init__()
offset = torch.linspace(start, stop, num_gaussians)
self.coeff = -0.5 / (offset[1] - offset[0]).item()**2
self.register_buffer('offset', offset)
def forward(self, dist):
dist = dist.view(-1, 1) - self.offset.view(1, -1)
return torch.exp(self.coeff * torch.pow(dist, 2))
class ShiftedSoftplus(torch.nn.Module):
def __init__(self):
super().__init__()
self.shift = torch.log(torch.tensor(2.0)).item()
def forward(self, x):
return F.softplus(x) - self.shift |