File size: 5,305 Bytes
4f5540c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os, pickle
import qml
import numpy as np
import pandas as pd
from tqdm import tqdm
from polymerlearn.utils.comparison_rep.element_info import *

import ase
from dscribe.descriptors import SOAP
from dscribe.descriptors import MBTR as MBTR_

import pyarrow.feather as feather

def Atom_XYZ(xyz_list):
    atoms = []
    charges = []
    coords = np.empty((0,3), float)
    
    for j in xyz_list:
        while j.startswith(" "):
            j = j[1:]
        while "\t" in j:
            j = j.replace("\t", " ")
        while "  " in j:
            j = j.replace("  ", " ")
        temp = j[:-1].split(" ")
        print(temp)

        atoms.append(temp[0])
        coords = np.append(coords, np.array([[temp[1], temp[2], temp[3]]]), axis=0)
        charges.append(AtomicNumber(temp[0]))
    
    return atoms, charges, coords

def CM(new_struct):
    '''
    new_struct: one chunk of XYZ file
    '''
    atoms, charges, coords = Atom_XYZ(new_struct)
    mol = qml.representations.generate_coulomb_matrix(nuclear_charges=charges, 
                                                        coordinates=coords, 
                                                        size=len(atoms), 
                                                        sorting='row-norm'
                                                        )
    return mol

def BOB(new_struct):
    '''
    new_struct: one chunk of XYZ file
    '''
    atoms, charges, coords = Atom_XYZ(new_struct)
    atom_dict = {}

    for j in atoms:
        if j not in atom_dict:
            atom_dict[j] = 1
        else:
            atom_dict[j] += 1

    mol = qml.representations.generate_bob(nuclear_charges=charges, 
                                            coordinates=coords, 
                                            atomtypes=np.unique(np.asarray(atoms)),
                                            size=len(atoms), 
                                            asize=atom_dict
                                            )
    return mol

def mySOAP(new_struct):
    '''
    new_struct: one chunk of XYZ file
    '''

    atoms, charges, coords = Atom_XYZ(new_struct)
    species = np.unique(np.asarray(atoms))

    soap = SOAP(species=species, 
                periodic=False, 
                rcut=3.0,
                nmax=5,
                lmax=4
                )

    mol = soap.create(system=ase.Atoms(positions=coords, numbers=charges),
                positions=coords,
                n_jobs=1,
                )

    return mol.flatten()

def MBTR(new_struct):

    atoms, charges, coords = Atom_XYZ(new_struct)
    species = np.unique(np.asarray(atoms))

    mbtr = MBTR_(species=species,
                k1={
                    "geometry": {"function": "atomic_number"},
                    "grid": {"min": 0, "max": 8, "n": 100, "sigma": 0.1},
                    },
                k2={
                    "geometry": {"function": "inverse_distance"},
                    "grid": {"min": 0, "max": 1, "n": 100, "sigma": 0.1},
                    "weighting": {"function": "exponential", "scale": 0.5, "cutoff": 1e-3},
                    },
                k3={
                    "geometry": {"function": "cosine"},
                    "grid": {"min": -1, "max": 1, "n": 100, "sigma": 0.1},
                    "weighting": {"function": "exponential", "scale": 0.5, "cutoff": 1e-3},
                    },
                periodic=False,
                normalization="l2_each", 
                flatten=True
                )
    mol = mbtr.create(system=ase.Atoms(positions=coords, numbers=charges),
                        n_jobs=1) # Hardcoded number of jobs

    return mol 

def get_one_top_xyz(filename):
    '''
    Gets the top XYZ chunk for the top conformer in file. Ready to input to representation generator
    '''
    with open(filename) as f:
        ff = f.readlines()
    natoms = int(ff[0])

    end = natoms + 1
    file_chunk = ff[2:end]
    return file_chunk

def screen_build(all_AG, 
        xyz_loc = '../../../Structures/AG/xyz', 
        rep_dir_loc = '../../../Representations',
        reps_to_screen = ['MBTR']):
    '''
    Screens all acids/glycols in a dataframe, builds representations of a given type
    '''

    gen_dict = {
        'CM': CM,
        'SOAP': mySOAP,
        'BOB': BOB,
        'MBTR': MBTR
    }

    xyzpath = lambda x: os.path.join(xyz_loc, x)

    for rep in reps_to_screen:
        print('REP', rep)
        for ag in all_AG:
            rloc_rep = os.path.join(rep_dir_loc, rep, 'AG')
            pickle_path = os.path.join(rloc_rep, ag.lower() + '.pickle')
        
            if not os.path.exists(pickle_path):
                fchunk = get_one_top_xyz(xyzpath(ag + '.xyz'))
                F = gen_dict[rep]
                mol = F(fchunk)
                pickle.dump(mol, open(pickle_path, 'wb'))
                #feather.write_feather(mol, feather_path)


if __name__ == '__main__':

    data = pd.read_csv('../../../dataset/pub_data.csv')
    ac = (20,33); gc = (34,46)
    acid_names = [c[1:] for c in data.columns[ac[0]:ac[1]].tolist() if '95% trans' not in c]
    glycol_names = [c[1:] for c in data.columns[gc[0]:gc[1]].tolist()]

    full_names = acid_names + glycol_names
    xyz_loc = '../../../Structures/AG'

    screen_build(full_names)