File size: 29,053 Bytes
4f5540c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 |
import os, glob, random
import torch
import numpy as np
import pandas as pd
from torch_geometric.data import Data, InMemoryDataset
from torch_geometric.loader import DataLoader
from torch_geometric.utils import to_networkx
from torch_geometric.transforms import NormalizeFeatures
from sklearn.model_selection import train_test_split, KFold
from sklearn.preprocessing import StandardScaler
from polymerlearn.utils.xyz2mol import int_atom, xyz2mol
def read_xyz_file_top_conformer(filename, look_for_charge=True):
"""
Reads an xyz file and parses the first conformer at the top
"""
atomic_symbols = []
xyz_coordinates = []
charge = 0
with open(filename, "r") as file:
for line_number, line in enumerate(file):
#print(line)
if line_number == 0:
num_atoms = int(line)
elif line_number == 1:
if "charge=" in line:
charge = int(line.split("=")[1])
elif line_number >= num_atoms + 2:
break # Break after first conformation
else:
atomic_symbol, x, y, z = line.split()
atomic_symbols.append(atomic_symbol)
xyz_coordinates.append([float(x), float(y), float(z)])
atoms = [int_atom(atom) for atom in atomic_symbols]
return atoms, charge, xyz_coordinates
def convert_xyz_to_mol(filename):
atoms, charge, xyz_coordinates = read_xyz_file_top_conformer(filename)
mols = xyz2mol(
atoms,
xyz_coordinates,
charge = charge,
use_graph=True,
allow_charged_fragments=True,
embed_chiral=False,
use_huckel=False)
return mols[0]
# Citation (C) = https://towardsdatascience.com/practical-graph-neural-networks-for-molecular-machine-learning-5e6dee7dc003
def get_atom_features(mol):
'''
Make atom features
- Can be made more robust with background work
'''
# Cite: C
features = []
for atom in mol.GetAtoms():
#atomic_number.append(atom.GetAtomicNum())
charge = atom.GetFormalCharge()
degree = atom.GetDegree()
mass = atom.GetMass()
is_aromatic = atom.GetIsAromatic()
anum = atom.GetAtomicNum()
explicit_hs = atom.GetNumExplicitHs()
num_valence = atom.GetTotalValence()
num_rad_electrons = atom.GetNumRadicalElectrons()
#features.append([charge, degree, mass, is_aromatic, anum, explicit_hs, num_rad_electrons])
features.append([charge, degree, mass, is_aromatic, explicit_hs, num_valence])
#num_hs.append(atom.GetTotalNumHs(includeNeighbors=True))
return torch.tensor(features).float()
def get_edge_index(mol, get_edge_attr = False):
'''
Gets edge index for a molecule
'''
# Cite: C
row, col = [], []
edge_attr = []
for bond in mol.GetBonds():
start, end = bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()
row += [start, end]
col += [end, start]
if get_edge_attr:
btype = bond.GetBondTypeAsDouble()
inring = int(bond.IsInRing())
edge_attr.append([btype, inring])
eidx = torch.tensor([row, col], dtype=torch.long)
if get_edge_attr:
edge_attr = torch.tensor(edge_attr).float()
return eidx, edge_attr
return eidx
def prepare_dataloader_graph_AG(
A_mol_list,
G_mol_list,
Y = None,
add_A = None,
add_G = None,
get_edge_attr = False,
device = None,
atom_feat=None,
normalize_features = False):
'''
Prepares a dataloader given a list of molecules
Args:
A_mol_list (list of lists): List of lists of RDKit Mol objects for each sample.
Should look something like:
[[A_11, A_12], [A_21, A_22, A_23, A_24], ..., [A_n1]]
G_mol_list (list of lists): Same as A_mol_list but for Glycols
Y (iterable, optional): Y (ground truth values) for each sample
add_A (dict of lists, optional): Dictionary of lists of values to add for each acid.
Should be keyed on strings of names of variables with list values
corresponding to numerical values to add to the Data objects in the
DataLoader.
add_G (dict of lists, optional): Same as add_A but for glycols.
atom_feat (Callable[[RdKit.Mol], torch.Tensor], optional): Function to output the
feature matrix for a given molecule.
normalize_features (bool, optional): If true, normalize all node features in the Acid
and Glycol graphs
'''
if atom_feat == None:
atom_feat = get_atom_features
assert len(A_mol_list) == len(G_mol_list), 'A and G mol (RDKit) lists not same length'
norm_feat = NormalizeFeatures(attrs = ['x'])
# Cite: C
data_list = []
i = 0 # Counts total Amols, Gmols that we've added (i.e. whole samples)
for Amols, Gmols in zip(A_mol_list, G_mol_list):
acid_graphs = []
j = 0 # Counts total number of acids for this sample
for Amol in Amols:
Ax = atom_feat(Amol)
if get_edge_attr:
Aedge_index, Aedge_attr = get_edge_index(Amol, get_edge_attr=True)
else:
Aedge_index = get_edge_index(Amol)
# Support for additional arguments:
add_args = {}
if add_A is not None:
for key, val in add_A.items():
add_args[key] = torch.tensor([val[i][j]]).float().to(device)
if Y is not None:
add_args['y'] = torch.tensor(Y[i]).float().to(device)
if get_edge_attr:
add_args['edge_attr'] = Aedge_attr.to(device)
acid_data = Data(
x=Ax.to(device),
edge_index = Aedge_index.to(device),
**add_args)
if normalize_features:
acid_data = norm_feat(acid_data)
# All acid data should be in device
acid_graphs.append(acid_data)
j += 1
glycol_graphs = []
j = 0 # Counts total number of glycols for this sample
for Gmol in Gmols:
Gx = atom_feat(Gmol)
if get_edge_attr:
Gedge_index, Gedge_attr = get_edge_index(Gmol, get_edge_attr=True)
else:
Gedge_index = get_edge_index(Gmol)
add_args = {}
if add_A is not None:
for key, val in add_G.items():
add_args[key] = torch.tensor([val[i][j]]).float()
# Support for adding multiple
if Y is not None:
add_args['y'] = torch.tensor(Y[i]).float().to(device)
if get_edge_attr:
add_args['edge_attr'] = Gedge_attr.to(device)
glycol_data = Data(
x=Gx.to(device),
edge_index=Gedge_index.to(device),
**add_args)
if normalize_features:
glycol_data = norm_feat(glycol_data)
# All glycol data should be in device
glycol_graphs.append(glycol_data)
j += 1
data_list.append((acid_graphs, glycol_graphs))
i += 1
return data_list
def graph_dataloader_z_pos(
A_charge_coords,
G_charge_coords,
Y,
):
'''
Gets dataloader by nuclear charges (z) and positions (pos)
- Useful for SchNet architecture
'''
data_list = []
for A, G in zip(A_charge_coords, G_charge_coords):
# List all atoms and their coordinates:
acid_data_list = []
for z, pos in A:
adata = Data(
z = torch.as_tensor(z).long(),
pos = torch.as_tensor(pos),
)
acid_data_list.append(adata)
glycol_data_list = []
for z, pos in G:
gdata = Data(
z = torch.as_tensor(z).long(),
pos = torch.as_tensor(pos),
)
glycol_data_list.append(gdata)
data_list.append((acid_data_list, glycol_data_list))
return data_list
def get_AG_info(data, ac = (20,33), gc = (34,46)):
'''
Gets acid/glycol info from a dataframe containing input in the Eastman fashion
'''
ac_tuple = False
gc_tuple = False
if type(ac) == tuple:
ac_tuple = True
if type(gc) == tuple:
gc_tuple = True
# Decompose the data into included names
if ac_tuple:
acid_names = pd.Series([c[1:] for c in data.columns[ac[0]:ac[1]].tolist()])
else:
acid_names = pd.Series([c[1:] for c in data[ac].columns.tolist()])
if gc_tuple:
glycol_names = pd.Series([c[1:] for c in data.columns[gc[0]:gc[1]].tolist()])
else:
glycol_names = pd.Series([c[1:] for c in data[gc].columns.tolist()])
# Holds all names of acids and glycols
acid_included = []
glycol_included = []
# Keep track of percents in each acid, glycol
acid_pcts = []
glycol_pcts = []
# Get relevant names and percentages of acid/glycols
for i in range(data.shape[0]):
if ac_tuple:
acid_hit = (data.iloc[i,ac[0]:ac[1]].to_numpy() > 0)
else:
acid_hit = (data[ac].iloc[i].to_numpy() > 0)
if gc_tuple:
glycol_hit = (data.iloc[i,gc[0]:gc[1]].to_numpy() > 0)
else:
glycol_hit = (data[gc].iloc[i].to_numpy() > 0)
# Add to percentage lists:
if ac_tuple:
acid_pcts.append(data.iloc[i,ac[0]:ac[1]][acid_hit].tolist())
else:
acid_pcts.append(data[ac].iloc[i][acid_hit].tolist())
if gc_tuple:
glycol_pcts.append(data.iloc[i,gc[0]:gc[1]][glycol_hit].tolist())
else:
glycol_pcts.append(data[gc].iloc[i][glycol_hit].tolist())
acid_pos = acid_names[np.argwhere(acid_hit).flatten()].tolist()
glycol_pos = glycol_names[np.argwhere(glycol_hit).flatten()].tolist()
acid_included.append(acid_pos)
glycol_included.append(glycol_pos)
return acid_included, glycol_included, acid_pcts, glycol_pcts
def list_mask(L, mask):
'''
Transform a list with a boolean mask
Args:
L (list): List to be masked
mask (iterable): Mask to apply on list L
'''
return [L[int(i)] for i in range(len(mask)) if mask[i]]
def split_validation(train_mask, val_num):
train_mask, val_mask = train_test_split(train_mask, test_size=val_num, random_state=14)
return train_mask, val_mask
# base_structure_dir = os.path.join('/home/sai/Eastman_Project',
# 'ReadyToEnsemble',
# 'Structures',
# 'AG',
# 'xyz')
base_structure_dir = os.path.join('..',
'Structures',
'AG',
'xyz')
class GraphDataset:
'''
Generates a graph dataset based on input from Eastman data
Args:
data (pd.DataFrame): DataFrame containing Eastman data format.
Y_target (pd.DataFrame): Target values to predict with the dataset.
structure_dir (str, optional): Location of base structures, i.e. xyz files.
Assumes that all xyz files are named exactly like the molecules in the
input data given from Eastman.
add_features (np.array or torch.Tensor): Additional features to be added to
each sample's final embedding before processing. These are GLOBAL features
and are not per-atom features (TODO: make per-atom features).
ac (tuple, len 2): Bottom and top bounds for all acids on the table given as
data. Must be column indices.
ac (list, str): List of columns for all acids
gc (tuple, len 2): Bottom and top bounds for all glycols on the table given as
data. Must be column indices.
gc (list, str): List of columns for all glycols
test_size (float): Proportion of data to be used as testing data (if using
train/test split).
val_size (float): Proportion of the data to be used as validation data. If None,
does not make a validation split.
get_edge_attr (bool): Option to use predefined edge features on the graphs.
bound_filter (list, length 2): Filters the dataset by some bound on Y value,
i.e. controls for outliers
TODO: implementation for multiple Y values
exclude_inds (list of ints): List of indices to exclude in the dataframe.
device (str): Device name at which to run torch calculations on. Supports GPU.
standard_scale (bool, optional): Whether to perform standard scaling for the
add_features at split time. Cannot be done as a preprocessing step (i.e.
incorporated to add_features) because the scales should depend only on trainig
data. Therefore, scaling parameters must be recomputed at each split.
Default False.
ss_mask (list/ndarray of bools): Mask over the variables that need to be standard
scaled. May be used if you want to scale some variables (like AN, OHN) but not
others (like Mw).
normalize_features (bool, optional): If True, normalize the X values using
`torch_geometric.transforms.NormalizeFeatures` for each graph. (:default: :obj:`True`)
'''
def __init__(self,
data,
Y_target,
structure_dir = base_structure_dir,
add_features = None,
ac = (20,33),
gc = (34,46),
test_size = 0.25,
val_size = None,
get_edge_attr = False,
bound_filter = None,
exclude_inds = None,
device = None,
standard_scale = False,
ss_mask = None,
z_pos_loaders = False,
kelvin=False,
normalize_features = False,
):
self.add_features = add_features
self.get_edge_attr = get_edge_attr
self.val_size = val_size
self.test_size = test_size
self.device = device
self.standard_scale = standard_scale
self.ss_mask = ss_mask
self.z_pos_loaders = z_pos_loaders
self.normalize_features = normalize_features
if self.add_features is not None:
if self.add_features.ndim == 1:
self.add_features = self.add_features[:, np.newaxis] # Turn to column vector
if type(ac) == tuple:
self.ac_tuple = True
else:
self.ac_tuple = False
if type(gc) == tuple:
self.gc_tuple = True
else:
self.gc_tuple = False
# Decompose the data into included names
if self.ac_tuple:
self.acid_names = pd.Series([c[1:] for c in data.columns[ac[0]:ac[1]].tolist()])
else:
self.acid_names = pd.Series([c[1:] for c in data[ac].columns.tolist()])
if self.gc_tuple:
self.glycol_names = pd.Series([c[1:] for c in data.columns[gc[0]:gc[1]].tolist()])
else:
self.glycol_names = pd.Series([c[1:] for c in data[gc].columns.tolist()])
# Holds all names of acids and glycols
acid_included = []
glycol_included = []
# Keep track of percents in each acid, glycol
acid_pcts = []
glycol_pcts = []
# Get relevant names and percentages of acid/glycols
for i in range(data.shape[0]):
if self.ac_tuple:
acid_hit = (data.iloc[i,ac[0]:ac[1]].to_numpy() > 0)
else:
acid_hit = (data[ac].iloc[i].to_numpy() > 0)
if self.gc_tuple:
glycol_hit = (data.iloc[i,gc[0]:gc[1]].to_numpy() > 0)
else:
glycol_hit = (data[gc].iloc[i].to_numpy() > 0)
# Add to percentage lists:
if self.ac_tuple:
acid_pcts.append(data.iloc[i,ac[0]:ac[1]][acid_hit].tolist())
else:
acid_pcts.append(data[ac].iloc[i][acid_hit].tolist())
if self.gc_tuple:
glycol_pcts.append(data.iloc[i,gc[0]:gc[1]][glycol_hit].tolist())
else:
glycol_pcts.append(data[gc].iloc[i][glycol_hit].tolist())
acid_pos = self.acid_names[np.argwhere(acid_hit).flatten()].tolist()
glycol_pos = self.glycol_names[np.argwhere(glycol_hit).flatten()].tolist()
acid_included.append(acid_pos)
glycol_included.append(glycol_pos)
# Read all xyz files into generators, get lowest energy conformation (index 0)
self.acid_mols = []
self.glycol_mols = []
if self.z_pos_loaders: # Load the Z-pos structure
for i in range(len(acid_included)):
A_sub = []
for j in range(len(acid_included[i])):
Acharge, _, Acoords = read_xyz_file_top_conformer(os.path.join(structure_dir, acid_included[i][j] + '.xyz'))
A_sub.append((Acharge, Acoords))
self.acid_mols.append(A_sub)
G_sub = []
for j in range(len(glycol_included[i])):
Gcharge, _, Gcoords = read_xyz_file_top_conformer(os.path.join(structure_dir, glycol_included[i][j] + '.xyz'))
G_sub.append((Acharge, Acoords))
self.glycol_mols.append(G_sub)
else:
for i in range(len(acid_included)):
self.acid_mols.append(
[convert_xyz_to_mol(os.path.join(structure_dir, acid_included[i][j] + '.xyz')) for j in range(len(acid_included[i]))]
)
self.glycol_mols.append(
[convert_xyz_to_mol(os.path.join(structure_dir, glycol_included[i][j] + '.xyz')) for j in range(len(glycol_included[i]))]
)
# Set Y (target)
Y = data.loc[:,Y_target]
if kelvin:
if 'Tg' in Y_target:
Y['Tg'] = Y['Tg'] + 273.15
# Mask data for empty entries
non_nan_mask = Y.notna()
self.exclude_inds = exclude_inds
if self.exclude_inds is not None:
# Set up exclude-by-index mask:
inds_lookup = set(self.exclude_inds)
exclude_by_index = [not (i in inds_lookup) for i in range(Y.shape[0])]
else:
exclude_by_index = [True] * Y.shape[0]
self.bound_filter = bound_filter
if self.bound_filter is not None:
non_nan_mask = non_nan_mask & (Y > bound_filter[0]) & (Y < bound_filter[1]) & exclude_by_index
non_nan_mask['res_bool'] = False
non_nan_mask.loc[non_nan_mask[Y_target].all(1), 'res_bool'] = True
non_nan_mask = non_nan_mask['res_bool'].values
self.total_samples = sum(non_nan_mask)
# Mask acid, glycols:
self.acid_mols = list_mask(self.acid_mols, non_nan_mask)
self.glycol_mols = list_mask(self.glycol_mols, non_nan_mask)
# Mask Y:
self.Y = Y[non_nan_mask].values
# Mask data:
self.data = data.loc[non_nan_mask,:]
# Mask percentages of acids and glycols:
self.acid_pcts = list_mask(acid_pcts, non_nan_mask)
self.glycol_pcts = list_mask(glycol_pcts, non_nan_mask)
# Mask additional features:
if self.add_features is not None: # Mask additional features, if needed
self.add_features = list_mask(self.add_features, non_nan_mask)
# Make dataloader
rangeL = list(range(len(self.acid_mols)))
train_mask, test_mask = train_test_split(rangeL, test_size = test_size, random_state=14)
# Support validation splitting:
if self.val_size is not None:
adj_valsize = (self.val_size) / (self.val_size + (1 - self.test_size))
train_mask, val_mask = train_test_split(train_mask, test_size = adj_valsize, random_state=14)
else:
val_mask = None
self.split_by_indices(train_mask=train_mask, test_mask=test_mask, val_mask=val_mask)
# if self.standard_scale:
# add_features = np.array(self.add_features)
print(Y)
def get_train_batch(self, size: int):
'''
Perform manual batching of graph dataset
Args:
size (int): Size of the batch to be retrieved
'''
# Randomly sample the training data
sample_inds = random.sample(list(np.arange(len(self.Ytrain))), k = size)
if self.add_features is None:
return [self.train_data[i] for i in sample_inds], torch.tensor([self.Ytrain[i] for i in sample_inds]).float(), None
else:
train_masked = [self.train_data[i] for i in sample_inds]
Y_masked = torch.tensor(np.array([self.Ytrain[i] for i in sample_inds])).float()
add_masked = [self.add_train[i] for i in sample_inds]
return train_masked, Y_masked, add_masked
def get_test(self, test_inds = None):
'''
Get test data nbased on the current internal split
Args:
test_inds (any, optional): If provided, is returned with all other
values.
'''
if test_inds is not None:
return self.test_data, \
torch.tensor(np.array(self.Ytest)).float().to(self.device), \
self.add_test, \
test_inds
else:
return self.test_data, \
torch.tensor(np.array(self.Ytest)).float().to(self.device), \
torch.tensor(self.add_test).float().to(self.device)
def get_validation(self):
'''
Get the validation data based on current internal splits
'''
if self.val_data is None: # No validation split present
return None
else:
# val_data should already be on device
return self.val_data, \
torch.tensor(self.Yval).float().to(self.device), \
torch.tensor(self.add_val).float().to(self.device)
def Kfold_CV(self, folds, val = False, val_size = None):
'''
Generator that wraps SKLearn's K-fold cross validation
Note that the yield of this function is the testing data, you must perform batching
of the dataset object (get_train_batch) to get the training data. Rationale
behind this is to allow you to train multiple epochs while repeatedly batching
the training data under one iteration of the Kfold_CV function.
Args:
folds (int): Number of folds for the cross validation.
val (bool): Should be set to True if using validation split.
val_size (float, 0<=x<=1): Proportion of whole dataset that is used for
validation split on each fold.
Yield:
tuple(tuple(train_data, Ytrain, add_train), tuple(test_data, Ytest, add_test))
'''
inds = np.arange(self.total_samples)
kfold = KFold(n_splits=folds, shuffle = True)
for train_inds, test_inds in kfold.split(inds):
if val: # Split the validation:
val_size = val_size if val_size is not None else self.val_size
val_adj = val_size / (val_size + (len(train_inds) / len(test_inds)))
train_inds, val_inds = train_test_split(train_inds, test_size = val_adj, random_state=14)
self.val_inds = val_inds # No set if val is not true
else:
val_inds = None
self.split_by_indices(train_mask = train_inds, test_mask = test_inds,
val_mask = val_inds)
self.train_inds = train_inds
self.test_inds = test_inds
yield self.get_test(test_inds)
def make_dataloader_by_mask(self, mask):
'''
Makes an internal dataloader based on some given list of indices
- Not technically a mask
- Makes no internal updates
'''
# Perform all train masking: -------------------------------
Ymask = [self.Y[int(i)] for i in mask]
mask_Amols = [self.acid_mols[int(i)] for i in mask]
mask_Gmols = [self.glycol_mols[int(i)] for i in mask]
if self.z_pos_loaders:
data = graph_dataloader_z_pos(mask_Amols, mask_Gmols, Ymask)
else:
add_A = {'pct': [self.acid_pcts[i] for i in mask]}
add_G = {'pct': [self.glycol_pcts[i] for i in mask]}
data = prepare_dataloader_graph_AG(mask_Amols, mask_Gmols, Ymask,
add_A = add_A, add_G = add_G, device = self.device,
normalize_features = self.normalize_features)
return data
def get_additional_by_mask(self, mask):
'''
Get additional elements based on given list of indices
'''
return [self.add_features[int(i)] for i in mask]
def get_Y_by_mask(self, mask):
return [self.Y[int(i)] for i in mask]
def split_by_indices(self, train_mask, test_mask, val_mask = None):
'''
Resets train_data, test_data, Ytrain, and Ytest for internal use
Splits the data given train_mask and test_mask and stores dataloaders in
self.train_data and self.test_data
'''
self.train_mask = train_mask
self.test_mask = test_mask
self.val_mask = val_mask
self.Ytrain = [self.Y[int(i)] for i in train_mask]
self.Ytest = [self.Y[int(i)] for i in test_mask]
self.train_data = self.make_dataloader_by_mask(train_mask)
self.test_data = self.make_dataloader_by_mask(test_mask)
if self.val_mask is not None:
self.Yval = [self.Y[int(i)] for i in val_mask]
self.val_data = self.make_dataloader_by_mask(val_mask)
else:
self.val_data = None
# Perform all test masking: --------------------------------
# self.Ytest = [self.Y[int(i)] for i in test_mask]
# self.test_Amols = [self.acid_mols[int(i)] for i in test_mask]
# self.test_Gmols = [self.glycol_mols[int(i)] for i in test_mask]
# add_A = {'pct': [self.acid_pcts[i] for i in test_mask]}
# add_G = {'pct': [self.glycol_pcts[i] for i in test_mask]}
# self.test_data = prepare_dataloader_graph_AG(self.test_Amols, self.test_Gmols, self.Ytest,
# add_A = add_A, add_G = add_G)
if self.add_features is not None:
self.add_train = [self.add_features[int(i)] for i in train_mask]
self.add_test = [self.add_features[int(i)] for i in test_mask]
if self.val_mask is not None:
self.add_val = [self.add_features[int(i)] for i in val_mask]
if self.standard_scale:
if self.ss_mask is not None:
self.add_train = np.array(self.add_train)
self.add_test = np.array(self.add_test)
# Scale only the variables masked in by the ss_mask:
ss = StandardScaler().fit(self.add_train[:,self.ss_mask])
self.add_train[:,self.ss_mask] = ss.transform(self.add_train[:,self.ss_mask])
self.add_test[:,self.ss_mask] = ss.transform(self.add_test[:,self.ss_mask])
if self.val_mask is not None:
self.add_val[:,self.ss_mask] = ss.transform(self.add_val[:,self.ss_mask])
self.add_val = list(self.add_val)
self.add_train = list(self.add_train)
self.add_test = list(self.add_test)
else:
# Standard scale based on new split
ss = StandardScaler().fit(np.array(self.add_train))
# Fit to only training data, as is customary
self.add_train = list(ss.transform(self.add_train))
self.add_test = list(ss.transform(self.add_test))
if self.val_mask is not None:
self.add_val = list(ss.transform(self.add_val))
else:
self.add_train = None
self.add_test = None
if self.val_mask is not None:
self.add_val = None
# Misc. testing functions:
def test_xyz2mol():
print(read_xyz_file_top_conformer(os.path.join(base_structure_dir, 'IPA.xyz')))
mol = convert_xyz_to_mol(os.path.join(base_structure_dir, 'IPA.xyz'))
print([a.GetAtomicNum() for a in mol.GetAtoms()])
def test_dataset():
data = pd.read_csv('../../dataset/pub_data.csv')
print(data)
base_structure_dir = os.path.join('..', '..',
'Structures',
'AG',
'xyz'
)
dataset = GraphDataset(data = data, Y_target=['IV'], z_pos_loaders = True,
structure_dir = base_structure_dir, kelvin=True)
#print(dataset.Y)
if __name__ == '__main__':
test_dataset()
|