File size: 24,282 Bytes
4f5540c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 |
import os
import torch
import numpy as np
import pandas as pd
from typing import List
from torch_geometric.data import Batch, Data
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error
from polymerlearn.utils import GraphDataset
def get_vector(
data: pd.DataFrame,
prop: str = 'Mw (PS)',
fill_value: float = None,
use_log: bool = True):
'''
Get vector to be added as sample-wide feature in model
Args:
data (pd.DataFrame): Base dataframe from which to extract the data.
prop (str, optional): Name of column (property) for which to get the
vector. (:default: :obj:`Mw (PS)`)
fill_value (float, optional): Value with which to fill missing values
in the column. If `None`, will fill missing values with median from
the column. (:default: :obj:`None`)
use_log (bool): Log transforms the values if true
standard_scale (bool):
:rtype: pd.Series
'''
if fill_value is None:
to_fill = sorted(data[prop].loc[data[prop].notna()])[int(sum(data[prop].notna())/2)]
else:
to_fill = fill_value
if prop != '%TMP' and use_log:
vec = np.log(data[prop].fillna(to_fill))
else:
# Don't log transform TMP
vec = data[prop].fillna(to_fill)
return vec
def get_IV_add(data):
'''
Return the standard IV additional data (i.e. resin properties) used
in the paper.
Args:
data (pd.Dataframe)
No arguments
'''
mw_vector = get_vector(data, prop = 'Mw (PS)').to_numpy()
an_vector = get_vector(data, prop = 'AN').to_numpy()
ohn_vector = get_vector(data, prop = 'OHN').to_numpy()
tmp_vector = get_vector(data, prop = '%TMP', fill_value=0).to_numpy()
add = np.stack([mw_vector, an_vector, ohn_vector, tmp_vector]).T
return add
def get_IV_add_nolog(data):
mw_vector = get_vector(data, prop = 'Mw (PS)', use_log = False).to_numpy()
an_vector = get_vector(data, prop = 'AN', use_log = False).to_numpy()
ohn_vector = get_vector(data, prop = 'OHN', use_log = False).to_numpy()
tmp_vector = get_vector(data, prop = '%TMP', fill_value=0).to_numpy()
add = np.stack([mw_vector, an_vector, ohn_vector, tmp_vector]).T
return add
def get_Tg_add(data):
mw_vector = get_vector(data, prop = 'Mw (PS)', use_log = True).to_numpy()
add = np.stack([mw_vector]).T
return add
def get_Tg_add_nolog(data):
mw_vector = get_vector(data, prop = 'Mw (PS)', use_log = False).to_numpy()
add = np.stack([mw_vector]).T
return add
def get_add_properties(data: pd.DataFrame, prop_names: List[str], use_log: List[bool] = None):
'''
Gets properties to add to the model given data, names of properties,
and whether to log transform them.
'''
add_vectors = []
if use_log is None:
use_log = [True] * len(prop_names)
for p,l in zip(prop_names, use_log):
fill_value = 0 if p=='%TMP' else None
add_vectors.append(
get_vector(data, prop=p, use_log=l, fill_value=fill_value)
)
return np.stack(add_vectors).T
def make_like_batch(batch: tuple):
'''
Decomposes a batch of acid/glycol into tensors to be fed into model
Args:
batch (tuple): Must be of length 2 and contain (Acid_data, Glycol_data).
:type: tuple[`torch.geometric.data.Batch`, `torch.geometric.data.Batch`]
'''
Adata, Gdata = batch
Abatch = Batch().from_data_list(Adata)
Gbatch = Batch().from_data_list(Gdata)
return Abatch, Gbatch
def check_early_stop(loss_list, delay = 100):
'''
Checks early stopping criterion for training procedure
Check max, see if <delay> epochs have passed since the max
'''
largest = np.argmin(loss_list)
# Can enforce some smoothness condition:
low = max(largest - 5, 0)
up = largest + 6
# Check if the difference between average around it and itself is different enough
minloss = loss_list[largest]
around_min = np.concatenate([loss_list[low:largest], loss_list[(largest+1):up]])
smooth = np.abs(np.mean(around_min) - minloss) < np.abs(minloss * 0.25)
return ((len(loss_list) - largest) > delay) and smooth
def train(
model: torch.nn.Module,
optimizer,
criterion,
dataset: GraphDataset,
batch_size: int = 64,
epochs: int = 1000
):
'''
Args:
model: Neural network to train
optimizer: Optimizer to use when training the model.
criterion: Loss function.
dataset: Dataset class.
batch_size: Number of samples on which to optimize at each iteration. See
the description in CV_Eval
epochs: Number of iterations to train on the data.
'''
for e in range(epochs):
# Batch:
batch, Y, add_features = dataset.get_train_batch(size = batch_size)
test_batch, Ytest, add_test = dataset.get_test()
train_predictions = []
cum_loss = 0
for i in range(batch_size):
# Predictions:
#predictions = torch.tensor([model(*make_like_batch(batch[i])) for i in range(batch_size)], requires_grad = True).float()
af = None if add_features is None else torch.tensor(add_features[i]).float()
train_prediction = model(*make_like_batch(batch[i]), af)
train_predictions.append(train_prediction.clone().detach().item())
#print(predictions)
# Compute and backprop loss
loss = criterion(train_prediction, torch.tensor([Y[i]]))
optimizer.zero_grad()
loss.backward()
cum_loss += loss.item()
optimizer.step()
# Test:
test_preds = []
with torch.no_grad():
for i in range(Ytest.shape[0]):
at = None if add_test is None else add_test[i].clone().detach()
test_preds.append(model(*make_like_batch(test_batch[i]), at).clone().detach().item())
r2_test = r2_score(Ytest.numpy(), test_preds)
mse_test = mean_squared_error(Ytest.numpy(), test_preds)
if e % 10 == 0:
print(f'Epoch: {e}, \t Train r2: {r2_score(Y, train_predictions):.4f} \t Train Loss: {cum_loss:.4f} \t Test r2: {r2_test:.4f} \t Test Loss {mse_test:.4f}')
def CV_eval(
dataset: GraphDataset,
model_generator: torch.nn.Module,
optimizer_generator,
criterion,
model_generator_kwargs: dict = {},
optimizer_kwargs: dict = {},
batch_size = 64,
verbose = 1,
epochs = 1000,
use_val = False,
val_size = 0.1,
stop_option = 0,
early_stop_delay = 100,
save_state_dicts = False,
get_scores = False,
device = None):
'''
Args:
dataset (GraphDataset): Preprocessed dataset matching the GraphDataset
API.
model_generator (torch.nn.Module): Class of the neural network/model that
can be instantiated multiple times within the function.
optimizer_generator: Optimizer that can be instantiated multiple times within
the function.
criterion: Loss function that can be instantiated multiple times within
the function.
model_generator_kwargs (dict): Dictionary of keyword arguments to be passed
to the model for every instantiation.
optimizer_kwargs (dict): Dictionary of keyword arguments to be passed
to the optimizer for every instantiation.
batch_size (int): Number of samples to be optimized on for each step. Note
this works differently than batch size in stochastic gradient descent.
Here, the higher value for the argument denotes more samples to be
trained on per epoch (usually vice versa is standard).
verbose (int): Level at which to print. Should be 0 or 1.
epochs (int): Number of training iterations on the dataset.
use_val (bool): If true, uses the validation set in the Dataset class.
val_sise (float): Size of the validation set to use
stop_option (int): Option that specifies which method to use for early
stopping/validation saving. 0 simply performs all epochs for each fold.
1 performs all epochs but uses model with highest validation score for
evaluation on test set. 2 stops early if the validation loss was at least
`early_stop_delay` epochs ago; it loads that trial's model and evaluates
on it.
early_stop_delay (int): Number of epochs to wait after an early stopping condition
is met.
save_state_dicts (bool): If True, returns state dictionaries for the model at
each fold. Useful for explainability.
get_scores (bool, optional): If True, return only the average values of metrics
across the folds
device (str): Device name at which to run torch calculations on. Supports GPU.
'''
num_folds = 2 # LB changed from 5 to 2
fold_count = 0
r2_test_per_fold = []
mse_test_per_fold = []
mae_test_per_fold = []
all_predictions = []
all_y = []
all_reference_inds = []
model_state_dicts = []
for test_batch, Ytest, add_test, test_inds in \
dataset.Kfold_CV(folds = num_folds, val = True, val_size = val_size):
# Instantiate fold-level model and optimizer:
model = model_generator(**model_generator_kwargs).to(device)
# Move model to GPU before setting optimizer
optimizer = optimizer_generator(model.parameters(), **optimizer_kwargs)
fold_count += 1
loss_list = []
if stop_option >= 1:
min_val_loss = 1e10
min_val_state_dict = None
for e in range(epochs):
# Bootstrap batches:
batch, Y, add_features = dataset.get_train_batch(size = batch_size)
train_predictions = []
cum_loss = 0
for i in range(batch_size):
# Predictions:
af = None if add_features is None else torch.tensor(add_features[i]).float()
if verbose > 1:
print('Additional it={}'.format(i), af)
train_prediction = model(*make_like_batch(batch[i]), af)
if verbose > 1:
print('pred', train_prediction.item())
train_predictions.append(train_prediction.clone().detach().item())
# Compute and backprop loss
loss = criterion(train_prediction, torch.tensor([Y[i]]))
optimizer.zero_grad()
loss.backward()
cum_loss += loss.item()
optimizer.step()
if verbose > 1:
print('Train predictions', train_predictions)
# Test on validation:
if use_val:
model.eval()
val_batch, Yval, add_feat_val = dataset.get_validation()
cum_val_loss = 0
val_preds = []
with torch.no_grad():
for i in range(Yval.shape[0]):
pred = model(*make_like_batch(val_batch[i]), add_feat_val[i])
val_preds.append(pred.item())
cum_val_loss += criterion(pred, Yval[i]).item()
loss_list.append(cum_val_loss)
model.train() # Must switch back to train after eval
if e % 50 == 0 and (verbose >= 1):
print_str = f'Fold: {fold_count} \t Epoch: {e}, \
\t Train r2: {r2_score(Y, train_predictions):.4f} \t Train Loss: {cum_loss:.4f}'
if use_val:
print_str += f'Val r2: {r2_score(Yval, val_preds):.4f} \t Val Loss: {cum_val_loss:.4f}'
print(print_str)
if stop_option >= 1:
if cum_val_loss < min_val_loss:
# If min val loss, store state dict
min_val_loss = cum_val_loss
min_val_state_dict = model.state_dict()
# Check early stop if needed:
if stop_option == 2:
# Check criteria:
if check_early_stop(loss_list, early_stop_delay) and e > early_stop_delay:
break
if stop_option >= 1: # Loads the min val loss state dict even if we didn't break
# Load in the model with min val loss
model = model_generator(**model_generator_kwargs)
model.load_state_dict(min_val_state_dict)
# Test:
test_preds = []
with torch.no_grad():
for i in range(Ytest.shape[0]):
at = None if add_test is None else torch.tensor(add_test[i]).float()
pred = model(*make_like_batch(test_batch[i]), at).clone().detach().item()
test_preds.append(pred)
all_predictions.append(pred)
all_y.append(Ytest[i].item())
all_reference_inds.append(test_inds[i])
r2_test = r2_score(Ytest.numpy(), test_preds)
mse_test = mean_squared_error(Ytest.numpy(), test_preds)
mae_test = mean_absolute_error(Ytest.numpy(), test_preds)
print(f'Fold: {fold_count} \t Test r2: {r2_test:.4f} \t Test Loss: {mse_test:.4f} \t Test MAE: {mae_test:.4f}')
r2_test_per_fold.append(r2_test)
mse_test_per_fold.append(mse_test)
mae_test_per_fold.append(mae_test)
if save_state_dicts:
model_state_dicts.append(model.state_dict())
print('Final avg. r2: ', np.mean(r2_test_per_fold))
print('Final avg. MSE:', np.mean(mse_test_per_fold))
print('Final avg. MAE:', np.mean(mae_test_per_fold))
r2_avg = np.mean(r2_test_per_fold)
mae_avg = np.mean(mae_test_per_fold)
big_ret_dict = {
'r2': r2_avg,
'mae': mae_avg,
'all_predictions': all_predictions,
'all_y': all_y,
'all_reference_inds': all_reference_inds,
'model_state_dicts': model_state_dicts
}
if save_state_dicts:
if get_scores:
return big_ret_dict
else:
print("Returning model_state_dicts")
return all_predictions, all_y, all_reference_inds, model_state_dicts
if get_scores: # Return scores:
return big_ret_dict
print("Not state dict")
return all_predictions, all_y, all_reference_inds
def train_joint(
model,
optimizer,
criterion,
dataset,
batch_size = 64,
epochs = 100,
gamma = 1e4
):
for e in range(epochs):
# Batch:
batch, Y, add_features = dataset.get_train_batch(size = batch_size)
test_batch, Ytest, add_test = dataset.get_test()
#Y = np.log(Y)
#Ytest = np.log(Ytest)
# Y[:, 0] = np.log(Y[:, 0])
# Ytest[:, 0] = np.log(Ytest[:, 0])
train_predictions = []
cum_loss = 0
model.train()
for i in range(batch_size):
# Predictions:
#predictions = torch.tensor([model(*make_like_batch(batch[i])) for i in range(batch_size)], requires_grad = True).float()
af = None if add_features is None else torch.tensor(add_features[i]).float()
train_prediction = model(*make_like_batch(batch[i]), af)
#train_predictions.append(train_prediction.clone().detach().item())
train_predictions.append([train_prediction[i].clone().detach().item() for i in ['IV', 'Tg']])
#print(predictions)
# Compute and backprop loss
#loss = criterion(train_prediction, torch.tensor([Y[i]]))
loss_IV = criterion(train_prediction['IV'], torch.tensor([Y[i][0]]))
loss_Tg = criterion(train_prediction['Tg'], torch.tensor([Y[i][1]]))
loss = gamma * loss_IV + loss_Tg
optimizer.zero_grad()
loss.backward()
cum_loss += loss.item()
optimizer.step()
# Test:
# model.eval()
# test_predIV = []
# test_predTg = []
# with torch.no_grad():
# for i in range(Ytest.shape[0]):
# pred = model(*make_like_batch(test_batch[i]), torch.tensor(add_test[i]).float())
# test_predIV.append(pred['IV'].clone().detach().item())
# test_predTg.append(pred['Tg'].clone().detach().item())
# r2_testIV = r2_score(Ytest[:,0].numpy(), test_predIV)
# r2_testTg = r2_score(Ytest[:,1].numpy(), test_predTg)
if e % 10 == 0:
print(f'Epoch: {e}, \t Train r2: {r2_score(Y, train_predictions):.4f} \t Train Loss: {cum_loss:.4f}') #\t Test r2: {r2_testIV:.4f} \t Test r2 (Tg): {r2_testTg}')
def CV_eval_joint(
dataset,
model_generator: torch.nn.Module,
optimizer_generator,
criterion,
model_generator_kwargs: dict = {},
optimizer_kwargs: dict = {},
batch_size = 64,
verbose = 1,
gamma = 1e4,
epochs = 1000,
get_scores = False,
device = None,
save_state_dicts = False,
check_r2_thresh = True):
'''
Cross validation of the joint Tg/IV model
Args:
gamma (float): Weighting factor applied to IV loss. Used
to balance the losses between IV and Tg during the joint
training process.
'''
num_folds = 5
fold_count = 0
r2_test_per_fold = []
r2_test_per_fold_IV = []
r2_test_per_fold_Tg = []
mse_test_per_fold = []
mse_test_per_fold_IV = []
mse_test_per_fold_Tg = []
mae_test_per_fold = []
mae_test_per_fold_IV = []
mae_test_per_fold_Tg = []
all_predictions = []
all_y = []
all_reference_inds = []
model_state_dicts = []
for test_batch, Ytest, add_test, test_inds in dataset.Kfold_CV(folds = num_folds):
model = model_generator(**model_generator_kwargs).to(device)
optimizer = optimizer_generator(model.parameters(), **optimizer_kwargs)
fold_count += 1
#Ytest = np.log(Ytest) # Log transform Ytest
#Ytest[:, 0] = np.log(Ytest[:, 0])
model.train()
#for e in range(epochs):
e = 0
while True:
# Batch:
batch, Y, add_features = dataset.get_train_batch(size = batch_size)
if add_features is not None:
add_features = torch.tensor(add_features).float().to(device)
#Y = np.log(Y) # Log transform Y
#[:, 0] = Y[:, 0])
train_predictions = []
cum_loss = 0
for i in range(batch_size):
# Predictions:
#predictions = torch.tensor([model(*make_like_batch(batch[i])) for i in range(batch_size)], requires_grad = True).float()
af = None if add_features is None else add_features[i]
A, G = make_like_batch(batch[i])
A, G = A.to(device), G.to(device)
train_prediction = model(A, G, af)
#train_prediction = model(*make_like_batch(batch[i]), af)
train_predictions.append([train_prediction[i].clone().detach().item() for i in ['IV', 'Tg']])
#print(predictions)
# Compute and backprop joint loss
loss_IV = criterion(train_prediction['IV'], torch.tensor([Y[i][0]]).to(device))
loss_Tg = criterion(train_prediction['Tg'], torch.tensor([Y[i][1]]).to(device))
loss = gamma * loss_IV + loss_Tg # Loss is additive between the two
optimizer.zero_grad()
loss.backward()
cum_loss += loss.item()
optimizer.step()
try:
r2IV = r2_score(Y[:][0], train_predictions[0][:])
except:
r2IV = -1
try:
r2Tg = r2_score(Y[:][1], train_predictions[1][:])
except:
r2Tg = -1
if e % 50 == 0:
#print(f'Fold: {fold_count} \t Epoch: {e}, \t Train r2: {r2_score(Y, train_predictions):.4f} \t Train Loss: {cum_loss:.4f}')
print(f'Fold: {fold_count} : {e}, Train r2 IV, Tg: {r2IV:.4f}, {r2Tg:.4f} \t Train Loss: {cum_loss:.4f}')
if check_r2_thresh and (e > epochs) and (r2IV > 0.9) and (r2Tg > 0.9):
# Check for stable learning on both IV and Tg
# Checks traning value, not validation
break
e += 1
# Test:
model.eval()
test_preds = []
with torch.no_grad():
for i in range(Ytest.shape[0]):
#test_preds.append(model(*make_like_batch(test_batch[i]), torch.tensor(add_test[i]).float()).clone().detach().item())
at = None if add_test is None else torch.tensor(add_test[i]).float().to(device)
A, G = make_like_batch(test_batch[i])
A, G = A.to(device), G.to(device)
test_pred = model(A, G, at)
pred = [test_pred[i].clone().detach().item() for i in ['IV', 'Tg']]
test_preds.append(pred)
all_predictions.append(pred)
all_y.append(Ytest[i,:].detach().clone().tolist())
all_reference_inds.append(test_inds[i])
r2_test = r2_score(Ytest.cpu().numpy(), test_preds)
r2_test_IV = r2_score(Ytest.cpu().numpy()[:, 0], np.array(test_preds)[:, 0])
r2_test_Tg = r2_score(Ytest.cpu().numpy()[:, 1], np.array(test_preds)[:, 1])
mse_test = mean_squared_error(Ytest.cpu().numpy(), test_preds)
mse_test_IV = mean_squared_error(Ytest.cpu().numpy()[:, 0], np.array(test_preds)[:, 0])
mse_test_Tg = mean_squared_error(Ytest.cpu().numpy()[:, 1], np.array(test_preds)[:, 1])
mae_test = mean_absolute_error(Ytest.cpu().numpy(), test_preds)
mae_test_IV = mean_absolute_error(Ytest.cpu().numpy()[:, 0], np.array(test_preds)[:, 0])
mae_test_Tg = mean_absolute_error(Ytest.cpu().numpy()[:, 1], np.array(test_preds)[:, 1])
print(f'Fold: {fold_count} \t Test r2: {r2_test:.4f} \t r2_IV: {r2_test_IV:.4f} \t r2_Tg: {r2_test_Tg:.4f} \t MSE: {mse_test:.4f} \t MSE_IV: {mse_test_IV:.4f} \t MSE_Tg: {mse_test_Tg:.4f} \t MAE: {mae_test:.4f} \t MAE_IV: {mae_test_IV:.4f} \t MAE_Tg: {mae_test_Tg:.4f}')
r2_test_per_fold.append(r2_test)
r2_test_per_fold_IV.append(r2_test_IV)
r2_test_per_fold_Tg.append(r2_test_Tg)
mse_test_per_fold.append(mse_test)
mse_test_per_fold_IV.append(mse_test_IV)
mse_test_per_fold_Tg.append(mse_test_Tg)
mae_test_per_fold.append(mae_test)
mae_test_per_fold_IV.append(mae_test_IV)
mae_test_per_fold_Tg.append(mae_test_Tg)
if save_state_dicts:
model_state_dicts.append(model.state_dict())
print('Final avg. r2: ', np.mean(r2_test_per_fold))
print('Final avg. r2 IV: ', np.mean(r2_test_per_fold_IV))
print('Final avg. r2 Tg: ', np.mean(r2_test_per_fold_Tg))
print('Final avg. MSE:', np.mean(mse_test_per_fold))
print('Final avg. MSE IV: ', np.mean(mse_test_per_fold_IV))
print('Final avg. MSE Tg: ', np.mean(mse_test_per_fold_Tg))
print('Final avg. MAE:', np.mean(mae_test_per_fold))
print('Final avg. MAE IV: ', np.mean(mae_test_per_fold_IV))
print('Final avg. MAE Tg: ', np.mean(mae_test_per_fold_Tg))
d = {
'IV':(np.mean(r2_test_per_fold_IV), np.mean(mae_test_per_fold_IV)),
'Tg':(np.mean(r2_test_per_fold_Tg), np.mean(mae_test_per_fold_Tg)),
'all_predictions': all_predictions,
'all_y': all_y,
'all_reference_inds': all_reference_inds,
'model_state_dicts': model_state_dicts
}
if save_state_dicts:
if get_scores:
return d
else:
return all_predictions, all_y, all_reference_inds, model_state_dicts
if get_scores:
# Return in a dictionary
return d
return all_predictions, all_y, all_reference_inds |