|
import torch |
|
from torch_geometric.nn import SAGEConv, GATConv, Sequential, BatchNorm |
|
from torch_geometric.nn import SAGPooling |
|
|
|
class PolymerGNN_IV_evidential(torch.nn.Module): |
|
def __init__(self, input_feat, hidden_channels, num_additional = 0): |
|
super(PolymerGNN_IV_evidential, self).__init__() |
|
self.hidden_channels = hidden_channels |
|
|
|
self.Asage = Sequential('x, edge_index, batch', [ |
|
(GATConv(input_feat, hidden_channels, aggr = 'max'), 'x, edge_index -> x'), |
|
BatchNorm(hidden_channels, track_running_stats=False), |
|
torch.nn.PReLU(), |
|
(SAGEConv(hidden_channels, hidden_channels, aggr = 'max'), 'x, edge_index -> x'), |
|
BatchNorm(hidden_channels, track_running_stats=False), |
|
torch.nn.PReLU(), |
|
(SAGPooling(hidden_channels), 'x, edge_index, batch=batch -> x'), |
|
]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.fc1 = torch.nn.Linear(hidden_channels * 2 + num_additional, hidden_channels) |
|
self.leaky1 = torch.nn.PReLU() |
|
self.fc2 = torch.nn.Linear(hidden_channels, 4) |
|
|
|
self.evidence = torch.nn.Softplus() |
|
|
|
def forward(self, Abatch: torch.Tensor, Gbatch: torch.Tensor, add_features: torch.Tensor): |
|
''' |
|
|
|
''' |
|
|
|
|
|
Aembeddings = self.Asage(Abatch.x, Abatch.edge_index, Abatch.batch)[0] |
|
Gembeddings = self.Asage(Gbatch.x, Gbatch.edge_index, Gbatch.batch)[0] |
|
|
|
|
|
|
|
|
|
Aembed, _ = torch.max(Aembeddings, dim=0) |
|
Gembed, _ = torch.max(Gembeddings, dim=0) |
|
|
|
|
|
if add_features is not None: |
|
poolAgg = torch.cat([Aembed, Gembed, add_features]) |
|
else: |
|
poolAgg = torch.cat([Aembed, Gembed]) |
|
|
|
x = self.leaky1(self.fc1(poolAgg)) |
|
|
|
|
|
gamma, logv, logalpha, logbeta = self.fc2(x).squeeze() |
|
|
|
|
|
|
|
|
|
|
|
|
|
v = self.evidence(logv) |
|
alpha = self.evidence(logalpha) + 1 |
|
beta = self.evidence(logbeta) |
|
|
|
|
|
|
|
multi_dict = { |
|
'gamma': gamma, |
|
'v': v, |
|
'alpha': alpha, |
|
'beta': beta |
|
} |
|
|
|
return multi_dict |