Spaces:
Runtime error
Runtime error
Commit
·
c0b640d
1
Parent(s):
4b406e7
resize image
Browse files- app.py +5 -7
- model.py +22 -5
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -4,9 +4,7 @@ import os
|
|
| 4 |
from model import VirtualStagingToolV2
|
| 5 |
|
| 6 |
|
| 7 |
-
def predict(
|
| 8 |
-
init_image = image.convert("RGB").resize((512, 512))
|
| 9 |
-
|
| 10 |
vs_tool = VirtualStagingToolV2(diffusion_version="stabilityai/stable-diffusion-2-inpainting")
|
| 11 |
if backyard_style:
|
| 12 |
style = backyard_style
|
|
@@ -83,10 +81,10 @@ with image_blocks as demo:
|
|
| 83 |
)
|
| 84 |
|
| 85 |
with gr.Column():
|
| 86 |
-
mask_image = gr.Image(label="Mask image", elem_id="mask-img", type="pil").style(height=
|
| 87 |
-
image_out_1 = gr.Image(label="Output 1", elem_id="output-img-1", type="pil").style(height=
|
| 88 |
-
image_out_2 = gr.Image(label="Output 2", elem_id="output-img-2", type="pil").style(height=
|
| 89 |
-
image_out_3 = gr.Image(label="Output 3", elem_id="output-img-3", type="pil").style(height=
|
| 90 |
|
| 91 |
btn.click(fn=predict, inputs=[image, style, backyard_style, color_preference, additional_info],
|
| 92 |
outputs=[image_out_1, image_out_2, image_out_3, mask_image])
|
|
|
|
| 4 |
from model import VirtualStagingToolV2
|
| 5 |
|
| 6 |
|
| 7 |
+
def predict(init_image, style, backyard_style, color_preference, additional_info):
|
|
|
|
|
|
|
| 8 |
vs_tool = VirtualStagingToolV2(diffusion_version="stabilityai/stable-diffusion-2-inpainting")
|
| 9 |
if backyard_style:
|
| 10 |
style = backyard_style
|
|
|
|
| 81 |
)
|
| 82 |
|
| 83 |
with gr.Column():
|
| 84 |
+
mask_image = gr.Image(label="Mask image", elem_id="mask-img", type="pil").style(height=400)
|
| 85 |
+
image_out_1 = gr.Image(label="Output 1", elem_id="output-img-1", type="pil").style(height=400)
|
| 86 |
+
image_out_2 = gr.Image(label="Output 2", elem_id="output-img-2", type="pil").style(height=400)
|
| 87 |
+
image_out_3 = gr.Image(label="Output 3", elem_id="output-img-3", type="pil").style(height=400)
|
| 88 |
|
| 89 |
btn.click(fn=predict, inputs=[image, style, backyard_style, color_preference, additional_info],
|
| 90 |
outputs=[image_out_1, image_out_2, image_out_3, mask_image])
|
model.py
CHANGED
|
@@ -3,6 +3,7 @@ import matplotlib.pyplot as plt
|
|
| 3 |
import matplotlib.patches as mpatches
|
| 4 |
from matplotlib import cm
|
| 5 |
|
|
|
|
| 6 |
from PIL import Image
|
| 7 |
import numpy as np
|
| 8 |
|
|
@@ -22,8 +23,12 @@ class VirtualStagingToolV2():
|
|
| 22 |
self.segmentation_version = segmentation_version
|
| 23 |
self.diffusion_version = diffusion_version
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
self.diffution_pipeline = StableDiffusionInpaintPipeline.from_pretrained(
|
| 29 |
self.diffusion_version,
|
|
@@ -44,6 +49,18 @@ class VirtualStagingToolV2():
|
|
| 44 |
mask[np.isin(prediction_array, mask_items)] = 0
|
| 45 |
mask[~np.isin(prediction_array, mask_items)] = 255
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
# # # Create a PIL Image object from the mask
|
| 48 |
mask_image = Image.fromarray(mask, mode='L')
|
| 49 |
# display(mask_image)
|
|
@@ -84,7 +101,7 @@ class VirtualStagingToolV2():
|
|
| 84 |
mask_items = [1, 2, 4, 25, 32]
|
| 85 |
room = 'backyard'
|
| 86 |
elif 73 in label_ids or 50 in label_ids or 61 in label_ids:
|
| 87 |
-
mask_items = [0, 3, 5, 8, 14, 50, 61, 71, 118, 124, 129
|
| 88 |
]
|
| 89 |
room = 'kitchen'
|
| 90 |
elif 37 in label_ids or 65 in label_ids or (27 in label_ids and 47 in label_ids and 70 in label_ids):
|
|
@@ -128,12 +145,12 @@ class VirtualStagingToolV2():
|
|
| 128 |
|
| 129 |
|
| 130 |
if room == 'kitchen':
|
| 131 |
-
items = [i for i in items if i in ['
|
| 132 |
elif room == 'bedroom':
|
| 133 |
items = [i for i in items if i in ['bed ', 'table', 'chest of drawers', 'desk', 'armchair', 'wardrobe']]
|
| 134 |
elif room == 'bathroom':
|
| 135 |
items = [i for i in items if
|
| 136 |
-
i in ['shower', 'bathtub', '
|
| 137 |
elif room == 'living room':
|
| 138 |
items = [i for i in items if
|
| 139 |
i in ['table', 'sofa', 'chest of drawers', 'armchair', 'cabinet', 'coffee table']]
|
|
|
|
| 3 |
import matplotlib.patches as mpatches
|
| 4 |
from matplotlib import cm
|
| 5 |
|
| 6 |
+
import cv2
|
| 7 |
from PIL import Image
|
| 8 |
import numpy as np
|
| 9 |
|
|
|
|
| 23 |
self.segmentation_version = segmentation_version
|
| 24 |
self.diffusion_version = diffusion_version
|
| 25 |
|
| 26 |
+
if segmentation_version == "openmmlab/upernet-convnext-tiny":
|
| 27 |
+
self.feature_extractor = AutoImageProcessor.from_pretrained(self.segmentation_version)
|
| 28 |
+
self.segmentation_model = UperNetForSemanticSegmentation.from_pretrained(self.segmentation_version)
|
| 29 |
+
elif segmentation_version == "nvidia/segformer-b5-finetuned-ade-640-640":
|
| 30 |
+
self.feature_extractor = SegformerFeatureExtractor.from_pretrained(self.segmentation_version)
|
| 31 |
+
self.segmentation_model = SegformerForSemanticSegmentation.from_pretrained(self.segmentation_version)
|
| 32 |
|
| 33 |
self.diffution_pipeline = StableDiffusionInpaintPipeline.from_pretrained(
|
| 34 |
self.diffusion_version,
|
|
|
|
| 49 |
mask[np.isin(prediction_array, mask_items)] = 0
|
| 50 |
mask[~np.isin(prediction_array, mask_items)] = 255
|
| 51 |
|
| 52 |
+
buffer_size = 10
|
| 53 |
+
|
| 54 |
+
# Dilate the binary image
|
| 55 |
+
kernel = np.ones((buffer_size, buffer_size), np.uint8)
|
| 56 |
+
dilated_image = cv2.dilate(mask, kernel, iterations=1)
|
| 57 |
+
|
| 58 |
+
# Subtract the original binary image
|
| 59 |
+
buffer_area = dilated_image - mask
|
| 60 |
+
|
| 61 |
+
# Apply buffer area to the original image
|
| 62 |
+
mask = cv2.bitwise_or(mask, buffer_area)
|
| 63 |
+
|
| 64 |
# # # Create a PIL Image object from the mask
|
| 65 |
mask_image = Image.fromarray(mask, mode='L')
|
| 66 |
# display(mask_image)
|
|
|
|
| 101 |
mask_items = [1, 2, 4, 25, 32]
|
| 102 |
room = 'backyard'
|
| 103 |
elif 73 in label_ids or 50 in label_ids or 61 in label_ids:
|
| 104 |
+
mask_items = [0, 3, 5, 8, 14, 50, 61, 71, 73, 118, 124, 129
|
| 105 |
]
|
| 106 |
room = 'kitchen'
|
| 107 |
elif 37 in label_ids or 65 in label_ids or (27 in label_ids and 47 in label_ids and 70 in label_ids):
|
|
|
|
| 145 |
|
| 146 |
|
| 147 |
if room == 'kitchen':
|
| 148 |
+
items = [i for i in items if i in ['cabinet', 'shelf', 'counter', 'countertop', 'stool']]
|
| 149 |
elif room == 'bedroom':
|
| 150 |
items = [i for i in items if i in ['bed ', 'table', 'chest of drawers', 'desk', 'armchair', 'wardrobe']]
|
| 151 |
elif room == 'bathroom':
|
| 152 |
items = [i for i in items if
|
| 153 |
+
i in ['shower', 'bathtub', 'screen door', 'cabinet']]
|
| 154 |
elif room == 'living room':
|
| 155 |
items = [i for i in items if
|
| 156 |
i in ['table', 'sofa', 'chest of drawers', 'armchair', 'cabinet', 'coffee table']]
|
requirements.txt
CHANGED
|
@@ -4,4 +4,5 @@ diffusers==0.16.1
|
|
| 4 |
accelerate==0.19.0
|
| 5 |
matplotlib==3.6.2
|
| 6 |
pillow==9.2.0
|
| 7 |
-
numpy==1.23.2
|
|
|
|
|
|
| 4 |
accelerate==0.19.0
|
| 5 |
matplotlib==3.6.2
|
| 6 |
pillow==9.2.0
|
| 7 |
+
numpy==1.23.2
|
| 8 |
+
opencv-python==4.7.0.72
|