File size: 11,056 Bytes
2eea4c8
 
23f94a2
8d64f6c
6b31e97
a2cbab6
2eea4c8
dc6da84
e601ec3
abc5850
fdba468
 
 
 
e601ec3
cbef93d
42e3027
fdba468
 
42e3027
8d64f6c
833f77f
6b31e97
7b88df7
f71d58f
6b31e97
7b88df7
6b31e97
8d64f6c
6b31e97
7b88df7
42e3027
 
e601ec3
fdba468
 
 
 
 
 
 
 
833f77f
42e3027
 
 
6b31e97
42e3027
833f77f
cf9c50f
b647a80
6b31e97
8d64f6c
42e3027
23f94a2
42e3027
8d64f6c
42e3027
 
6b31e97
 
42e3027
e601ec3
42e3027
 
6b31e97
 
8d64f6c
6b31e97
8d64f6c
42e3027
 
e601ec3
833f77f
8d64f6c
 
6b31e97
42e3027
 
 
fdba468
 
 
 
42e3027
 
 
fdba468
 
 
b94f3d0
 
fdba468
b94f3d0
fdba468
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42e3027
fdba468
8d64f6c
fdba468
 
 
 
 
 
 
 
42e3027
fdba468
42e3027
fdba468
 
 
 
 
 
 
 
42e3027
 
6b31e97
42e3027
 
833f77f
8d64f6c
6b31e97
42e3027
e601ec3
8d64f6c
42e3027
e601ec3
8d64f6c
e601ec3
 
42e3027
e601ec3
 
6b31e97
 
 
e601ec3
 
42e3027
 
e601ec3
6b31e97
e601ec3
 
6b31e97
e601ec3
8d64f6c
6b31e97
42e3027
8d64f6c
42e3027
6b31e97
 
 
 
 
e601ec3
42e3027
 
 
 
8d64f6c
42e3027
 
 
 
e601ec3
 
 
 
42e3027
9c7088c
9ca8387
 
 
f893faf
9ca8387
 
 
 
 
 
 
 
e601ec3
 
7b88df7
e601ec3
42e3027
e601ec3
e111a95
8d64f6c
 
e601ec3
42e3027
 
 
e601ec3
 
 
6b31e97
8d64f6c
6b31e97
8d64f6c
 
6b31e97
 
8d64f6c
6b31e97
8d64f6c
 
 
 
 
 
 
 
 
6b31e97
 
42e3027
6b31e97
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from agent import BasicAgent

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
DOWNLOAD_DIR = "downloaded_task_files" # Directory to save downloaded files

# --- Basic Agent Definition is now imported from agent.py ---
# (Remove the inline BasicAgent class definition from here if it exists)

def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, downloads associated files, runs the BasicAgent on them,
    submits all answers, and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # Create download directory if it doesn't exist
    try:
        os.makedirs(DOWNLOAD_DIR, exist_ok=True)
        print(f"Ensured download directory exists: {DOWNLOAD_DIR}")
    except OSError as e:
        print(f"Error creating download directory {DOWNLOAD_DIR}: {e}")
        return f"Error creating download directory: {e}", None

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        file_name = item.get("file_name")
        local_file_path = None
        download_status = "No file specified"

        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue

        if file_name:
            # Construct download URL and local file path
            # File is identified by task_id on the server, but saved locally with its original file_name
            download_url = f"{api_url}/files/{task_id}" # Changed from file_name to task_id
            local_file_path = os.path.join(DOWNLOAD_DIR, file_name)
            print(f"Attempting to download file for task {task_id} (associated file name: {file_name}) from {download_url}")
            try:
                file_response = requests.get(download_url, stream=True, timeout=30)
                file_response.raise_for_status()
                with open(local_file_path, 'wb') as f:
                    for chunk in file_response.iter_content(chunk_size=8192):
                        f.write(chunk)
                download_status = f"Successfully downloaded to {local_file_path}"
                print(download_status)
            except requests.exceptions.RequestException as e:
                download_status = f"Failed to download {file_name}: {e}"
                print(download_status)
                local_file_path = None # Ensure agent doesn't get a path to a non-existent/failed file
            except Exception as e:
                download_status = f"An unexpected error occurred downloading {file_name}: {e}"
                print(download_status)
                local_file_path = None


        try:
            submitted_answer = agent(question_text, file_path=local_file_path)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "File Name": file_name if file_name else "N/A",
                "Download Status": download_status,
                "Local File Path": local_file_path if local_file_path else "N/A",
                "Submitted Answer": submitted_answer
            })
        except Exception as e:
             error_message = f"AGENT ERROR: {e}"
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "File Name": file_name if file_name else "N/A",
                "Download Status": download_status,
                "Local File Path": local_file_path if local_file_path else "N/A",
                "Submitted Answer": error_message
            })

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)