Numini / app.py
sanjudebnath's picture
Update app.py
aad2b57 verified
raw
history blame
1.75 kB
import streamlit as st
import numpy as np
import torch
from transformers import DistilBertTokenizer, DistilBertForQuestionAnswering
@st.cache(allow_output_mutation=True)
def load_model():
model = DistilBertForQuestionAnswering.from_pretrained("distilbert-base-uncased-distilled-squad")
tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased-distilled-squad")
return model, tokenizer
def get_answer(question, text, tokenizer, model):
inputs = tokenizer(question, text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = model(**inputs)
start = torch.argmax(outputs.start_logits)
end = torch.argmax(outputs.end_logits) + 1
ans_tokens = inputs.input_ids[0][start:end]
answer = tokenizer.decode(ans_tokens, skip_special_tokens=True)
return answer
def main():
st.set_page_config(page_title="Question Answering Tool", page_icon=":mag_right:")
st.write("# Question Answering Tool \n"
"This tool will help you find answers to your questions about the text you provide. \n"
"Please enter your question and the text you want to search in the boxes below.")
model, tokenizer = load_model()
with st.form("qa_form"):
text = st.text_area("Enter your text here")
question = st.text_input("Enter your question here")
if st.form_submit_button("Submit"):
data_load_state = st.text('Let me think about that...')
answer = get_answer(question, text, tokenizer, model)
if answer.strip() == "":
data_load_state.text("Sorry but I don't know the answer to that question")
else:
data_load_state.text(answer)
main()