Spaces:
Sleeping
Sleeping
Create app.py
Browse filesAdd app.py directly as remote push is failing
app.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from textblob import TextBlob
|
| 4 |
+
|
| 5 |
+
def call_model(text: str, model_type: str = "textblob"):
|
| 6 |
+
"""
|
| 7 |
+
Return raw sentiment analysis output from selected model.
|
| 8 |
+
"""
|
| 9 |
+
if model_type == "textblob":
|
| 10 |
+
blob = TextBlob(text)
|
| 11 |
+
return blob.sentiment # returns namedtuple(polarity, subjectivity)
|
| 12 |
+
|
| 13 |
+
elif model_type == "transformer":
|
| 14 |
+
# Placeholder for future integration
|
| 15 |
+
return {"label": "POSITIVE", "score": 0.98}
|
| 16 |
+
|
| 17 |
+
else:
|
| 18 |
+
raise ValueError(f"Unsupported model type: {model_type}")
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def sentiment_analysis(text: str) -> str:
|
| 22 |
+
"""
|
| 23 |
+
Analyze the sentiment of the given text.
|
| 24 |
+
|
| 25 |
+
Args:
|
| 26 |
+
text (str): The text to analyze
|
| 27 |
+
|
| 28 |
+
Returns:
|
| 29 |
+
str: A JSON string containing polarity, subjectivity, and assessment
|
| 30 |
+
"""
|
| 31 |
+
sentiment = call_model(text, model_type="textblob")
|
| 32 |
+
|
| 33 |
+
# Handle TextBlob response (namedtuple)
|
| 34 |
+
if isinstance(sentiment, tuple): # Simple check for TextBlob style
|
| 35 |
+
polarity = round(sentiment.polarity, 2)
|
| 36 |
+
subjectivity = round(sentiment.subjectivity, 2)
|
| 37 |
+
assessment = (
|
| 38 |
+
"positive" if polarity > 0 else
|
| 39 |
+
"negative" if polarity < 0 else
|
| 40 |
+
"neutral"
|
| 41 |
+
)
|
| 42 |
+
result = {
|
| 43 |
+
"polarity": polarity,
|
| 44 |
+
"subjectivity": subjectivity,
|
| 45 |
+
"assessment": assessment
|
| 46 |
+
}
|
| 47 |
+
else:
|
| 48 |
+
# Future: handle ML-based sentiment output
|
| 49 |
+
result = sentiment
|
| 50 |
+
|
| 51 |
+
return json.dumps(result)
|
| 52 |
+
|
| 53 |
+
# Create the Gradio interface
|
| 54 |
+
demo = gr.Interface(
|
| 55 |
+
fn=sentiment_analysis,
|
| 56 |
+
inputs=gr.Textbox(placeholder="Enter text to analyze..."),
|
| 57 |
+
outputs=gr.Textbox(), # Changed from gr.JSON() to gr.Textbox()
|
| 58 |
+
title="Text Sentiment Analysis",
|
| 59 |
+
description="Analyze the sentiment of text using TextBlob"
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
# Launch the interface and MCP server
|
| 63 |
+
if __name__ == "__main__":
|
| 64 |
+
demo.launch(mcp_server=True)
|