Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -39,17 +39,17 @@ import matplotlib.pyplot as plt
|
|
39 |
from skimage import exposure
|
40 |
|
41 |
cdl_color_map = [{'value': 1, 'label': 'Natural vegetation', 'rgb': (233,255,190)},
|
42 |
-
{'value': 2, 'label': '
|
43 |
-
{'value': 3, 'label': '
|
44 |
{'value': 4, 'label': 'Soybeans', 'rgb': (38,115,0)},
|
45 |
{'value': 5, 'label': 'Wetlands', 'rgb': (128,179,179)},
|
46 |
{'value': 6, 'label': 'Developed/Barren', 'rgb': (156,156,156)},
|
47 |
{'value': 7, 'label': 'Open Water', 'rgb': (77,112,163)},
|
48 |
-
{'value': 8, 'label': '
|
49 |
-
{'value': 9, 'label': '
|
50 |
{'value': 10, 'label': 'Fallow/Idle cropland', 'rgb': (191,191,122)},
|
51 |
{'value': 11, 'label': 'Cotton', 'rgb':(255,38,38)},
|
52 |
-
{'value': 12, 'label': '
|
53 |
{'value': 13, 'label': 'Other', 'rgb':(0,175,77)}]
|
54 |
|
55 |
|
@@ -234,8 +234,8 @@ func = partial(inference_on_file, model=model, custom_test_pipeline=custom_test_
|
|
234 |
|
235 |
with gr.Blocks() as demo:
|
236 |
|
237 |
-
gr.Markdown(value='#
|
238 |
-
gr.Markdown(value='''
|
239 |
The user needs to provide an HLS geotiff image, including 18 bands for 3 time-step, and each time-step includes the channels described above (Blue, Green, Red, Narrow NIR, SWIR, SWIR 2) in order.
|
240 |
''')
|
241 |
with gr.Row():
|
|
|
39 |
from skimage import exposure
|
40 |
|
41 |
cdl_color_map = [{'value': 1, 'label': 'Natural vegetation', 'rgb': (233,255,190)},
|
42 |
+
{'value': 2, 'label': 'Fruits(oranges,chicu)', 'rgb': (149,206,147)},
|
43 |
+
{'value': 3, 'label': 'lenties Dal', 'rgb': (255,212,0)},
|
44 |
{'value': 4, 'label': 'Soybeans', 'rgb': (38,115,0)},
|
45 |
{'value': 5, 'label': 'Wetlands', 'rgb': (128,179,179)},
|
46 |
{'value': 6, 'label': 'Developed/Barren', 'rgb': (156,156,156)},
|
47 |
{'value': 7, 'label': 'Open Water', 'rgb': (77,112,163)},
|
48 |
+
{'value': 8, 'label': 'Wheat', 'rgb': (168,112,0)},
|
49 |
+
{'value': 9, 'label': 'Rice', 'rgb': (255,168,227)},
|
50 |
{'value': 10, 'label': 'Fallow/Idle cropland', 'rgb': (191,191,122)},
|
51 |
{'value': 11, 'label': 'Cotton', 'rgb':(255,38,38)},
|
52 |
+
{'value': 12, 'label': 'Gram Dal', 'rgb':(255,158,15)},
|
53 |
{'value': 13, 'label': 'Other', 'rgb':(0,175,77)}]
|
54 |
|
55 |
|
|
|
234 |
|
235 |
with gr.Blocks() as demo:
|
236 |
|
237 |
+
gr.Markdown(value='# multi temporal crop classification')
|
238 |
+
gr.Markdown(value='''this is a first-of-its-kind temporal Vision transformer Harmonised Landsat Sentinel 2 (HLS) data. This demo showcases how the model was finetuned to classify crop and other land use categories using multi temporal data. More detailes can be found [here](https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification).\n
|
239 |
The user needs to provide an HLS geotiff image, including 18 bands for 3 time-step, and each time-step includes the channels described above (Blue, Green, Red, Narrow NIR, SWIR, SWIR 2) in order.
|
240 |
''')
|
241 |
with gr.Row():
|