Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, Request | |
from fastapi.templating import Jinja2Templates | |
from fastapi.staticfiles import StaticFiles | |
from fastapi.responses import HTMLResponse | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
from .config import settings | |
from pydantic import BaseModel | |
app = FastAPI( | |
title="Deepseek Chat API", | |
description="A simple chat API using DeepSeek model", | |
version="1.0.0" | |
) | |
# Mount static files and templates | |
app.mount("/static", StaticFiles(directory="app/static"), name="static") | |
templates = Jinja2Templates(directory="app/templates") | |
# Initialize model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(settings.MODEL_NAME, token=settings.HUGGINGFACE_TOKEN) | |
model = AutoModelForCausalLM.from_pretrained( | |
settings.MODEL_NAME, | |
token=settings.HUGGINGFACE_TOKEN, | |
torch_dtype=torch.float16, | |
device_map="auto" | |
) | |
class ChatMessage(BaseModel): | |
message: str | |
async def home(request: Request): | |
return templates.TemplateResponse("chat.html", {"request": request}) | |
async def chat(message: ChatMessage): | |
# Prepare the prompt | |
prompt = f"### Instruction: {message.message}\n\n### Response:" | |
# Generate response | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=512, | |
temperature=0.7, | |
do_sample=True, | |
pad_token_id=tokenizer.eos_token_id | |
) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Extract only the response part | |
response = response.split("### Response:")[-1].strip() | |
return {"response": response} | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=7860) |