nutrivision / app.py
sarahawad24's picture
Update app.py
e2a55bf verified
import torch
import gradio as gr
from PIL import Image, ImageDraw
import numpy as np
import torchvision.transforms as T
import datetime
import shutil
from pathlib import Path
from collections import Counter
import yaml
import numpy as np
import pandas as pd
from ultralytics import YOLO
from sklearn.model_selection import KFold
import glob, os
from PIL import Image
from dotenv import load_dotenv
from roboflow import Roboflow
# Load your model
#model = torch.hub.load('ultralytics/yolov8', 'custom', path='best.pt', trust_repo=True)
#model = YOLO('best.pt')
model = ultralytics.YOLO('yolov8m').load('best.pt')
model.eval()
# Define your classes
classes = [
"Apple", "Banana", "Beetroot", "Bitter_Gourd", "Bottle_Gourd", "Cabbage",
"Capsicum", "Carrot", "Cauliflower", "Cherry", "Chilli", "Coconut",
"Cucumber", "EggPlant", "Ginger", "Grape", "Green_Orange", "Kiwi",
"Maize", "Mango", "Melon", "Okra", "Onion", "Orange", "Peach", "Pear",
"Peas", "Pineapple", "Pomegranate", "Potato", "Radish", "Strawberry",
"Tomato", "Turnip", "Watermelon", "walnut", "almond"
]
# Define the inference function
def detect(image):
# Transform the image to tensor
transform = T.Compose([T.ToTensor()])
input_tensor = transform(image).unsqueeze(0)
# Perform inference
with torch.no_grad():
detections = model(input_tensor)[0]
# Draw bounding boxes and labels on the image
draw = ImageDraw.Draw(image)
for detection in detections:
# Each detection includes [x1, y1, x2, y2, confidence, class]
x1, y1, x2, y2, conf, cls = detection
if conf >= 0.5: # Consider detections with confidence >= 0.5
label = classes[int(cls)]
draw.rectangle(((x1, y1), (x2, y2)), outline="red", width=2)
draw.text((x1, y1), f"{label} ({conf:.2f})", fill="red")
return np.array(image)
# Create a Gradio interface
iface = gr.Interface(
fn=detect,
inputs=gr.inputs.Image(source="webcam", tool="editor"),
outputs="image",
live=True,
)
# Launch the app
iface.launch()