Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
from PIL import Image, ImageDraw | |
import numpy as np | |
import torchvision.transforms as T | |
import datetime | |
import shutil | |
from pathlib import Path | |
from collections import Counter | |
import yaml | |
import numpy as np | |
import pandas as pd | |
from ultralytics import YOLO | |
from sklearn.model_selection import KFold | |
import glob, os | |
from PIL import Image | |
from dotenv import load_dotenv | |
from roboflow import Roboflow | |
# Load your model | |
#model = torch.hub.load('ultralytics/yolov8', 'custom', path='best.pt', trust_repo=True) | |
#model = YOLO('best.pt') | |
model = ultralytics.YOLO('yolov8m').load('best.pt') | |
model.eval() | |
# Define your classes | |
classes = [ | |
"Apple", "Banana", "Beetroot", "Bitter_Gourd", "Bottle_Gourd", "Cabbage", | |
"Capsicum", "Carrot", "Cauliflower", "Cherry", "Chilli", "Coconut", | |
"Cucumber", "EggPlant", "Ginger", "Grape", "Green_Orange", "Kiwi", | |
"Maize", "Mango", "Melon", "Okra", "Onion", "Orange", "Peach", "Pear", | |
"Peas", "Pineapple", "Pomegranate", "Potato", "Radish", "Strawberry", | |
"Tomato", "Turnip", "Watermelon", "walnut", "almond" | |
] | |
# Define the inference function | |
def detect(image): | |
# Transform the image to tensor | |
transform = T.Compose([T.ToTensor()]) | |
input_tensor = transform(image).unsqueeze(0) | |
# Perform inference | |
with torch.no_grad(): | |
detections = model(input_tensor)[0] | |
# Draw bounding boxes and labels on the image | |
draw = ImageDraw.Draw(image) | |
for detection in detections: | |
# Each detection includes [x1, y1, x2, y2, confidence, class] | |
x1, y1, x2, y2, conf, cls = detection | |
if conf >= 0.5: # Consider detections with confidence >= 0.5 | |
label = classes[int(cls)] | |
draw.rectangle(((x1, y1), (x2, y2)), outline="red", width=2) | |
draw.text((x1, y1), f"{label} ({conf:.2f})", fill="red") | |
return np.array(image) | |
# Create a Gradio interface | |
iface = gr.Interface( | |
fn=detect, | |
inputs=gr.inputs.Image(source="webcam", tool="editor"), | |
outputs="image", | |
live=True, | |
) | |
# Launch the app | |
iface.launch() |