Spaces:
Runtime error
Runtime error
Upload gradio.py
Browse files
gradio.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from PIL import Image, ImageDraw
|
4 |
+
import numpy as np
|
5 |
+
import torchvision.transforms as T
|
6 |
+
|
7 |
+
# Load your model
|
8 |
+
model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt') # Adjust path if necessary
|
9 |
+
model.eval()
|
10 |
+
|
11 |
+
# Define your classes
|
12 |
+
classes = [
|
13 |
+
"Apple", "Banana", "Beetroot", "Bitter_Gourd", "Bottle_Gourd", "Cabbage",
|
14 |
+
"Capsicum", "Carrot", "Cauliflower", "Cherry", "Chilli", "Coconut",
|
15 |
+
"Cucumber", "EggPlant", "Ginger", "Grape", "Green_Orange", "Kiwi",
|
16 |
+
"Maize", "Mango", "Melon", "Okra", "Onion", "Orange", "Peach", "Pear",
|
17 |
+
"Peas", "Pineapple", "Pomegranate", "Potato", "Radish", "Strawberry",
|
18 |
+
"Tomato", "Turnip", "Watermelon", "walnut", "almond"
|
19 |
+
]
|
20 |
+
|
21 |
+
# Define the inference function
|
22 |
+
def detect(image):
|
23 |
+
# Transform the image to tensor
|
24 |
+
transform = T.Compose([T.ToTensor()])
|
25 |
+
input_tensor = transform(image).unsqueeze(0)
|
26 |
+
|
27 |
+
# Perform inference
|
28 |
+
with torch.no_grad():
|
29 |
+
detections = model(input_tensor)[0]
|
30 |
+
|
31 |
+
# Draw bounding boxes and labels on the image
|
32 |
+
draw = ImageDraw.Draw(image)
|
33 |
+
for detection in detections:
|
34 |
+
# Each detection includes [x1, y1, x2, y2, confidence, class]
|
35 |
+
x1, y1, x2, y2, conf, cls = detection
|
36 |
+
if conf >= 0.5: # Consider detections with confidence >= 0.5
|
37 |
+
label = classes[int(cls)]
|
38 |
+
draw.rectangle(((x1, y1), (x2, y2)), outline="red", width=2)
|
39 |
+
draw.text((x1, y1), f"{label} ({conf:.2f})", fill="red")
|
40 |
+
|
41 |
+
return np.array(image)
|
42 |
+
|
43 |
+
# Create a Gradio interface
|
44 |
+
iface = gr.Interface(
|
45 |
+
fn=detect,
|
46 |
+
inputs=gr.inputs.Image(source="webcam", tool="editor"),
|
47 |
+
outputs="image",
|
48 |
+
live=True,
|
49 |
+
)
|
50 |
+
|
51 |
+
# Launch the app
|
52 |
+
iface.launch()
|