Spaces:
Sleeping
Sleeping
File size: 4,208 Bytes
10734c0 4b526a8 10734c0 4b526a8 10734c0 f08ad33 9fc2ff8 10734c0 f08ad33 7318986 abccd5b 4b526a8 abccd5b 10734c0 4b526a8 10734c0 5c7b9f9 10734c0 5c7b9f9 10734c0 4b526a8 10734c0 4b526a8 10734c0 4b526a8 10734c0 4b526a8 10734c0 4b526a8 10734c0 4b526a8 10734c0 4b526a8 10734c0 4b526a8 10734c0 4b526a8 10734c0 4b526a8 10734c0 4b526a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
import whisper
import gradio as gr
from groq import Groq
from deep_translator import GoogleTranslator
from diffusers import StableDiffusionPipeline
import os
import torch
import openai
# # Replace with your OpenAI API key
# openai.api_key = "https://huggingface.co/EleutherAI/gpt-neo-2.7B/resolve/main/model.safetensors"
# Set up Groq API key
api_key = os.getenv("GROQ_API_KEY")
client = Groq(api_key=api_key)
# Retrieve Hugging Face API key from environment variable
HF_API_KEY = os.getenv("HF_API_KEY")
if HF_API_KEY is None:
raise ValueError("Hugging Face API key not found. Please set it as an environment variable.")
# Login to Hugging Face
try:
login(HF_API_KEY)
print("Login successful!")
except Exception as e:
print(f"Error during Hugging Face login: {str(e)}")
# Set device: CUDA if available, else CPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_id1 = "dreamlike-art/dreamlike-diffusion-1.0"
pipe = StableDiffusionPipeline.from_pretrained(model_id1, torch_dtype=torch.float16, use_safetensors=True)
pipe = pipe.to("cuda")
… temperature=0.7,
)
return response['choices'][0]['message']['content'].strip()
except Exception as e:
return f"An error occurred during text generation: {str(e)}"
def process_audio(audio_path, image_option, creative_text_option):
if audio_path is None:
return "Please upload an audio file.", None, None, None
# Step 1: Transcribe audio
try:
with open(audio_path, "rb") as file:
transcription = client.audio.transcriptions.create(
file=(os.path.basename(audio_path), file.read()),
model="whisper-large-v3",
language="ta",
response_format="verbose_json",
)
tamil_text = transcription.text
except Exception as e:
return f"An error occurred during transcription: {str(e)}", None, None, None
# Step 2: Translate Tamil to English
try:
translator = GoogleTranslator(source='ta', target='en')
translation = translator.translate(tamil_text)
except Exception as e:
return tamil_text, f"An error occurred during translation: {str(e)}", None, None
# Step 3: Generate creative text (if selected)
creative_text = None
if creative_text_option == "Generate Creative Text":
creative_text = generate_creative_text(translation)
# Step 4: Generate image (if selected)
image = None
if image_option == "Generate Image":
try:
model_id1 = "dreamlike-art/dreamlike-diffusion-1.0"
pipe = StableDiffusionPipeline.from_pretrained(model_id1, torch_dtype=torch.float16, use_safetensors=True)
pipe = pipe.to("cuda")
image = pipe(translation).images[0]
except Exception as e:
return tamil_text, translation, creative_text, f"An error occurred during image generation: {str(e)}"
return tamil_text, translation, creative_text, image
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Base()) as iface:
gr.Markdown("# Audio Transcription, Translation, Image & Creative Text Generation")
with gr.Row():
with gr.Column():
audio_input = gr.Audio(type="filepath", label="Upload Audio File")
image_option = gr.Dropdown(["Generate Image", "Skip Image"], label="Image Generation", value="Generate Image")
creative_text_option = gr.Dropdown(["Generate Creative Text", "Skip Creative Text"], label="Creative Text Generation", value="Generate Creative Text")
submit_button = gr.Button("Process Audio")
with gr.Column():
tamil_text_output = gr.Textbox(label="Tamil Transcription")
translation_output = gr.Textbox(label="English Translation")
creative_text_output = gr.Textbox(label="Creative Text")
image_output = gr.Image(label="Generated Image")
submit_button.click(
fn=process_audio,
inputs=[audio_input, image_option, creative_text_option],
outputs=[tamil_text_output, translation_output, creative_text_output, image_output]
)
# Launch the interface
iface.launch()
|