from groq import Groq import gradio as gr import os client = Groq( api_key =os.getenv('api_key_gorq') ) def response_from_llam3(query): messages = [ { "role" : "system", "content": "You are an helpul Assistant who has plently of Knowledge on Ayur Veda. If the message is Hi or any greeting say namste how can i assist you " }, { "role": "user", "content": "What is the answer to {}".format(query) } ] response = client.chat.completions.create( messages = messages, model = "llama3-70b-8192" ) return response.choices[0].message.content def response_from_mistral(query): messages = [ { "role" : "system", "content": "You are an helpul Assistant who has plently of Knowledge on Ayur Veda. If the message is Hi or any greeting say namste how can i assist you " }, { "role": "user", "content": "What is the answer to {}".format(query) } ] response = client.chat.completions.create( messages = messages, model = "mixtral-8x7b-32768" ) return response.choices[0].message.content # iface = gr.Interface( # fn=response_from_llam3, # inputs="text", # outputs="text", # examples=[ # ['What is importance of fasting according to Ayurveda?'], # ['What are the medicinal values of Tusli?'], # ['What are the three different doshas?'], # ['What is the ideal diet according to ayurveda?'] # ], # cache_examples=False, # ) # iface.launch() def chat_with_models(text): llama_response = response_from_llam3(text) mistral_response =response_from_mistral(text) return llama_response, mistral_response with gr.Blocks() as demo: gr.Markdown("