File size: 2,257 Bytes
cc82b37
82c6cf9
cc82b37
82c6cf9
cc82b37
020ff2f
cc82b37
c0559fe
6bd6468
82c6cf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
020ff2f
6bd6468
 
82c6cf9
27f2b4b
6bd6468
 
 
 
 
 
 
82c6cf9
cc82b37
 
 
919751f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import os
from langchain_core.prompts import PromptTemplate
from langchain.chains.question_answering import load_qa_chain
from langchain_community.document_loaders import PyPDFLoader
import google.generativeai as genai
import gradio as gr

# Function for initialization
def initialize(pdf_file, question):
    try:
        # Save the uploaded PDF content temporarily
        with open("/tmp/uploaded_file.pdf", "wb") as f:
            f.write(pdf_file.read())
        file_path = "/tmp/uploaded_file.pdf"

        # Configure Google Generative AI
        genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
        model = genai.GenerativeModel('gemini-pro')
        model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)

        # Prompt template for formatting context and question
        prompt_template = """Answer the question as precise as possible using the provided context. If the answer is not contained in the context, say "answer not available in context" 

Context: 
{context}

Question: 
{question} 

Answer:
"""

        prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])

        # Process the PDF if it exists
        if os.path.exists(file_path):
            pdf_loader = PyPDFLoader(file_path)
            pages = pdf_loader.load_and_split()
            context = "\n".join(str(page.page_content) for page in pages[:30])  # Limit to first 30 pages
            stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
            stuff_answer = stuff_chain({"input_documents": pages, "question": question, "context": context}, return_only_outputs=True)
            return stuff_answer['output_text']
        else:
            return "Error: Unable to process the document. Please ensure the PDF file is valid."
    except Exception as e:
        return f"An error occurred: {e}"  # Generic error handling

# Create a Gradio interface
interface = gr.Interface(
    fn=initialize,
    inputs=[
        gr.File(label="Upload PDF"),  # No need for 'type' argument
        gr.Textbox(label="Question")
    ],
    outputs="text",
    title="GeminiPro Q&A Bot",
    description="Ask questions about the uploaded PDF document.",
)

# Launch the interface
interface.launch()