Spaces:
Sleeping
Sleeping
File size: 2,158 Bytes
cc82b37 82c6cf9 cc82b37 82c6cf9 cc82b37 020ff2f cc82b37 c0559fe 6bd6468 82c6cf9 9751da0 9c5ca00 9751da0 82c6cf9 9751da0 82c6cf9 9c5ca00 82c6cf9 020ff2f 6bd6468 82c6cf9 27f2b4b 6bd6468 82c6cf9 cc82b37 919751f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
import os
from langchain_core.prompts import PromptTemplate
from langchain.chains.question_answering import load_qa_chain
from langchain_community.document_loaders import PyPDFLoader
import google.generativeai as genai
import gradio as gr
# Function for initialization
def initialize(pdf_file, question):
try:
# Access the uploaded file information from Gradio
file_info = pdf_file
# Check if a file was uploaded
if file_info is not None:
# Construct potential file path based on temporary directory and filename
file_path = os.path.join("/tmp", file_info.name) # Adjust temporary directory if needed
if os.path.exists(file_path):
# Process the PDF
pdf_loader = PyPDFLoader(file_path)
pages = pdf_loader.load_and_split()
context = "\n".join(str(page.page_content) for page in pages[:30]) # Limit to first 30 pages
# ... rest of your code for processing the PDF using context and question
else:
return "Error: The uploaded file could not be found."
else:
return "Error: No PDF file was uploaded."
except Exception as e:
return f"An error occurred: {e}" # Generic error handling
# Configure Google Generative AI (replace with your API key)
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
# Prompt template for formatting context and question
prompt_template = """Answer the question as precise as possible using the provided context. If the answer is not contained in the context, say "answer not available in context"
Context:
{context}
Question:
{question}
Answer:
"""
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
# Create a Gradio interface
interface = gr.Interface(
fn=initialize,
inputs=[
gr.File(label="Upload PDF"), # No need for 'type' argument
gr.Textbox(label="Question")
],
outputs="text",
title="GeminiPro Q&A Bot",
description="Ask questions about the uploaded PDF document.",
)
# Launch the interface
interface.launch()
|