import os from langchain_core.prompts import PromptTemplate from langchain.chains.question_answering import load_qa_chain from langchain_community.document_loaders import PyPDFLoader import google.generativeai as genai import gradio as gr # Function for initialization def initialize(pdf_file, question): try: # Save the uploaded PDF content temporarily with open("/tmp/uploaded_file.pdf", "wb") as f: f.write(pdf_file.read()) file_path = "/tmp/uploaded_file.pdf" # Configure Google Generative AI genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) model = genai.GenerativeModel('gemini-pro') model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3) # Prompt template for formatting context and question prompt_template = """Answer the question as precise as possible using the provided context. If the answer is not contained in the context, say "answer not available in context" Context: {context} Question: {question} Answer: """ prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) # Process the PDF if it exists if os.path.exists(file_path): pdf_loader = PyPDFLoader(file_path) pages = pdf_loader.load_and_split() context = "\n".join(str(page.page_content) for page in pages[:30]) # Limit to first 30 pages stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) stuff_answer = stuff_chain({"input_documents": pages, "question": question, "context": context}, return_only_outputs=True) return stuff_answer['output_text'] else: return "Error: Unable to process the document. Please ensure the PDF file is valid." except Exception as e: return f"An error occurred: {e}" # Generic error handling # Create a Gradio interface interface = gr.Interface( fn=initialize, inputs=[ gr.File(label="Upload PDF"), # No need for 'type' argument gr.Textbox(label="Question") ], outputs="text", title="GeminiPro Q&A Bot", description="Ask questions about the uploaded PDF document.", ) # Launch the interface interface.launch()