import os from langchain_core.prompts import PromptTemplate from langchain_community.output_parsers.rail_parser import GuardrailsOutputParser from langchain_community.document_loaders import PyPDFLoader import google.generativeai as genai import gradio as gr # Function for initialization def initialize(pdf_file, question): try: # Access the uploaded file information from Gradio file_info = pdf_file # Check if a file was uploaded if file_info is not None: # Construct potential file path based on temporary directory and filename file_path = os.path.join("/tmp", file_info.name) # Adjust temporary directory if needed if os.path.exists(file_path): # Process the PDF pdf_loader = PyPDFLoader(file_path) pages = pdf_loader.load_and_split() processed_context = "\n".join(str(page.page_content) for page in pages[:30]) # Limit to first 30 pages # Configure Google Generative AI (replace with your API key) genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) # Prompt template for formatting context and question prompt_template = """Answer the question as precise as possible using the provided context. If the answer is not contained in the context, say "answer not available in context" Context: {context} Question: {question} Answer: """ prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) # Load the GeminiPro model model = genai.GenerativeModel('gemini-pro') # Option 1: Using GeminiPro's Text Generation (if applicable) # Check if the model has a 'generate' method (or similar) - adjust based on actual method if hasattr(model, 'generate'): # Process context and question (already done) # Generate answer using GeminiPro's generate method generated_answer = model.generate(prompt=prompt) # Replace with the appropriate method # Extract the answer (parse the output from 'generate') # ... (implementation depends on the model's output format) return generated_answer # Option 2: Alternative LLM Integration (if GeminiPro methods not suitable) # Replace this section with code using an alternative library/framework # for question answering (e.g., transformers, haystack) # Ensure the code integrates with your chosen LLM and handles context processing, # question answering, and answer extraction. # Example placeholder (replace with your actual implementation): # return "Alternative LLM integration not yet implemented." else: return "Error: The uploaded file could not be found." else: return "Error: No PDF file was uploaded." except Exception as e: return f"An error occurred: {e}" # Generic error handling # Create a Gradio interface interface = gr.Interface( fn=initialize, inputs=[ gr.File(label="Upload PDF"), # No need for 'type' argument gr.Textbox(label="Question") ], outputs="text", title="GeminiPro Q&A Bot", description="Ask questions about the uploaded PDF document.", ) # Launch the interface interface.launch()