Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,27 +8,38 @@ from langchain_google_genai import ChatGoogleGenerativeAI
|
|
8 |
import google.generativeai as genai
|
9 |
from langchain.chains.question_answering import load_qa_chain # Import load_qa_chain
|
10 |
|
11 |
-
|
12 |
async def initialize(file_path, question):
|
13 |
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
14 |
model = genai.GenerativeModel('gemini-pro')
|
15 |
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
Answer:
|
21 |
"""
|
22 |
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
|
|
23 |
if os.path.exists(file_path):
|
24 |
pdf_loader = PyPDFLoader(file_path)
|
25 |
pages = pdf_loader.load_and_split()
|
26 |
context = "\n".join(f"Page {i+1}: {page.page_content}" for i, page in enumerate(pages[:30]))
|
27 |
stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
28 |
|
29 |
-
# Use ainvoke
|
30 |
stuff_answer = await stuff_chain.ainvoke({"input_documents": pages, "question": question, "context": context})
|
31 |
|
|
|
|
|
|
|
|
|
32 |
# Extract the page number where the context was found
|
33 |
sources = []
|
34 |
for i, page in enumerate(pages):
|
@@ -43,11 +54,10 @@ async def initialize(file_path, question):
|
|
43 |
# Add the clickable link to the source
|
44 |
file_name = os.path.basename(file_path)
|
45 |
source_link = f"[{file_name}](file://{os.path.abspath(file_path)})"
|
46 |
-
return f"{
|
47 |
else:
|
48 |
return "Error: Unable to process the document. Please ensure the PDF file is valid."
|
49 |
|
50 |
-
|
51 |
# Define Gradio Interface
|
52 |
input_file = gr.File(label="Upload PDF File")
|
53 |
input_question = gr.Textbox(label="Ask about the document")
|
|
|
8 |
import google.generativeai as genai
|
9 |
from langchain.chains.question_answering import load_qa_chain # Import load_qa_chain
|
10 |
|
|
|
11 |
async def initialize(file_path, question):
|
12 |
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
13 |
model = genai.GenerativeModel('gemini-pro')
|
14 |
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
|
15 |
+
|
16 |
+
# Refined prompt template to encourage precise and concise answers
|
17 |
+
prompt_template = """Answer the question precisely and concisely using the provided context. Avoid any additional commentary or system messages.
|
18 |
+
If the answer is not contained in the context, respond with "answer not available in context".
|
19 |
+
|
20 |
+
Context:
|
21 |
+
{context}
|
22 |
+
|
23 |
+
Question:
|
24 |
+
{question}
|
25 |
+
|
26 |
Answer:
|
27 |
"""
|
28 |
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
29 |
+
|
30 |
if os.path.exists(file_path):
|
31 |
pdf_loader = PyPDFLoader(file_path)
|
32 |
pages = pdf_loader.load_and_split()
|
33 |
context = "\n".join(f"Page {i+1}: {page.page_content}" for i, page in enumerate(pages[:30]))
|
34 |
stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
35 |
|
36 |
+
# Use ainvoke to get the result
|
37 |
stuff_answer = await stuff_chain.ainvoke({"input_documents": pages, "question": question, "context": context})
|
38 |
|
39 |
+
# Post-process the answer to remove any unnecessary text or system messages
|
40 |
+
answer = stuff_answer.strip()
|
41 |
+
answer = answer.split("Answer:")[1] if "Answer:" in answer else answer
|
42 |
+
|
43 |
# Extract the page number where the context was found
|
44 |
sources = []
|
45 |
for i, page in enumerate(pages):
|
|
|
54 |
# Add the clickable link to the source
|
55 |
file_name = os.path.basename(file_path)
|
56 |
source_link = f"[{file_name}](file://{os.path.abspath(file_path)})"
|
57 |
+
return f"{answer} {source_str} - [Document: {source_link}]"
|
58 |
else:
|
59 |
return "Error: Unable to process the document. Please ensure the PDF file is valid."
|
60 |
|
|
|
61 |
# Define Gradio Interface
|
62 |
input_file = gr.File(label="Upload PDF File")
|
63 |
input_question = gr.Textbox(label="Ask about the document")
|