Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,75 +1,80 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import asyncio
|
4 |
-
from datetime import datetime
|
5 |
from langchain_core.prompts import PromptTemplate
|
6 |
from langchain_community.document_loaders import PyPDFLoader
|
7 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
8 |
import google.generativeai as genai
|
9 |
-
from langchain.chains.question_answering import load_qa_chain
|
10 |
|
11 |
-
# Initialize
|
12 |
-
|
13 |
-
context_history = ""
|
14 |
|
15 |
-
async def initialize(file_path, question):
|
16 |
-
global context_history
|
17 |
-
|
18 |
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
19 |
model = genai.GenerativeModel('gemini-pro')
|
20 |
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
|
21 |
|
22 |
# Refined prompt template to encourage precise and concise answers
|
23 |
-
prompt_template = """
|
24 |
If the answer is not contained in the context, respond with "answer not available in context".
|
25 |
-
|
26 |
Context:
|
27 |
{context}
|
28 |
|
|
|
|
|
|
|
29 |
Question:
|
30 |
{question}
|
31 |
|
32 |
Answer:
|
33 |
"""
|
34 |
-
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
36 |
if os.path.exists(file_path):
|
37 |
pdf_loader = PyPDFLoader(file_path)
|
38 |
pages = pdf_loader.load_and_split()
|
39 |
-
|
40 |
# Extract content from each page and store along with page number
|
41 |
page_contexts = [page.page_content for i, page in enumerate(pages)]
|
42 |
context = "\n".join(page_contexts[:30]) # Using the first 30 pages for context
|
43 |
-
|
44 |
# Load the question-answering chain
|
45 |
stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
46 |
-
|
47 |
-
# Combine previous context with the new context
|
48 |
-
|
|
|
49 |
|
50 |
# Get the answer from the model
|
51 |
-
stuff_answer = await stuff_chain.ainvoke({"input_documents": pages, "question": question, "context":
|
52 |
answer = stuff_answer.get('output_text', '').strip()
|
53 |
-
|
54 |
# Identify key sentences or phrases
|
55 |
key_phrases = answer.split(". ") # Split answer into sentences for more precise matching
|
56 |
-
|
57 |
# Score each page based on the presence of key phrases
|
58 |
page_scores = [0] * len(pages)
|
59 |
for i, page in enumerate(pages):
|
60 |
for phrase in key_phrases:
|
61 |
if phrase.lower() in page.page_content.lower():
|
62 |
page_scores[i] += 1
|
63 |
-
|
64 |
# Determine the top pages based on highest scores
|
65 |
top_pages_with_scores = sorted(enumerate(page_scores), key=lambda x: x[1], reverse=True)
|
66 |
top_pages = [i + 1 for i, score in top_pages_with_scores if score > 0][:2] # Get top 2 pages
|
67 |
-
|
68 |
# Generate links for each top page
|
69 |
file_name = os.path.basename(file_path)
|
70 |
page_links = [f"[Page {p}](file://{os.path.abspath(file_path)})" for p in top_pages]
|
71 |
page_links_str = ', '.join(page_links)
|
72 |
-
|
73 |
if top_pages:
|
74 |
source_str = f"Top relevant page(s): {page_links_str}"
|
75 |
else:
|
@@ -77,20 +82,13 @@ async def initialize(file_path, question):
|
|
77 |
|
78 |
# Create a clickable link for the document
|
79 |
source_link = f"[Document: {file_name}](file://{os.path.abspath(file_path)})"
|
80 |
-
|
81 |
-
#
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
'source': source_str,
|
88 |
-
'document_link': source_link
|
89 |
-
})
|
90 |
-
|
91 |
-
# Update context history
|
92 |
-
context_history += f"\nQ: {question}\nA: {answer}"
|
93 |
-
|
94 |
return f"Answer: {answer}\n{source_str}\n{source_link}"
|
95 |
else:
|
96 |
return "Error: Unable to process the document. Please ensure the PDF file is valid."
|
@@ -100,36 +98,37 @@ input_file = gr.File(label="Upload PDF File")
|
|
100 |
input_question = gr.Textbox(label="Ask about the document")
|
101 |
output_text = gr.Textbox(label="Answer and Top Pages", lines=10, max_lines=10)
|
102 |
|
103 |
-
def get_chat_history():
|
104 |
-
|
105 |
-
|
|
|
|
|
106 |
|
107 |
-
async def pdf_qa(file, question):
|
108 |
if file is None:
|
109 |
return "Error: No file uploaded. Please upload a PDF document."
|
110 |
|
111 |
-
answer = await initialize(file.name, question)
|
112 |
return answer
|
113 |
|
114 |
# Create Gradio Interfaces
|
115 |
qa_interface = gr.Interface(
|
116 |
-
fn=pdf_qa,
|
117 |
-
inputs=[input_file, input_question],
|
118 |
outputs=output_text,
|
119 |
title="PDF Question Answering System",
|
120 |
-
description="Upload a PDF file and ask questions about the content."
|
121 |
)
|
122 |
|
123 |
history_interface = gr.Interface(
|
124 |
-
fn=get_chat_history,
|
125 |
-
inputs=
|
126 |
outputs=gr.Textbox(label="Chat History", lines=20, max_lines=20),
|
127 |
title="Chat History",
|
128 |
-
description="View the history of interactions."
|
129 |
)
|
130 |
|
131 |
# Launch both interfaces
|
132 |
qa_interface.launch(share=True)
|
133 |
history_interface.launch(share=True)
|
134 |
|
135 |
-
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import asyncio
|
|
|
4 |
from langchain_core.prompts import PromptTemplate
|
5 |
from langchain_community.document_loaders import PyPDFLoader
|
6 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
7 |
import google.generativeai as genai
|
8 |
+
from langchain.chains.question_answering import load_qa_chain
|
9 |
|
10 |
+
# Initialize a dictionary to store chat history and context per session
|
11 |
+
session_contexts = {}
|
|
|
12 |
|
13 |
+
async def initialize(file_path, question, session_id):
|
|
|
|
|
14 |
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
15 |
model = genai.GenerativeModel('gemini-pro')
|
16 |
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
|
17 |
|
18 |
# Refined prompt template to encourage precise and concise answers
|
19 |
+
prompt_template = """You are a helpful assistant. Use the context provided below to answer the question precisely and concisely.
|
20 |
If the answer is not contained in the context, respond with "answer not available in context".
|
21 |
+
|
22 |
Context:
|
23 |
{context}
|
24 |
|
25 |
+
Conversation History:
|
26 |
+
{history}
|
27 |
+
|
28 |
Question:
|
29 |
{question}
|
30 |
|
31 |
Answer:
|
32 |
"""
|
33 |
+
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "history", "question"])
|
34 |
+
|
35 |
+
# Get or initialize the context and history for the current session
|
36 |
+
context_history = session_contexts.get(session_id, {"context": "", "history": ""})
|
37 |
+
combined_context = context_history["context"]
|
38 |
+
conversation_history = context_history["history"]
|
39 |
+
|
40 |
if os.path.exists(file_path):
|
41 |
pdf_loader = PyPDFLoader(file_path)
|
42 |
pages = pdf_loader.load_and_split()
|
43 |
+
|
44 |
# Extract content from each page and store along with page number
|
45 |
page_contexts = [page.page_content for i, page in enumerate(pages)]
|
46 |
context = "\n".join(page_contexts[:30]) # Using the first 30 pages for context
|
47 |
+
|
48 |
# Load the question-answering chain
|
49 |
stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
50 |
+
|
51 |
+
# Combine previous context and conversation history with the new context
|
52 |
+
full_context = combined_context + "\n" + context
|
53 |
+
full_history = conversation_history + f"\nQ: {question}\nA: {answer}"
|
54 |
|
55 |
# Get the answer from the model
|
56 |
+
stuff_answer = await stuff_chain.ainvoke({"input_documents": pages, "question": question, "context": full_context, "history": full_history})
|
57 |
answer = stuff_answer.get('output_text', '').strip()
|
58 |
+
|
59 |
# Identify key sentences or phrases
|
60 |
key_phrases = answer.split(". ") # Split answer into sentences for more precise matching
|
61 |
+
|
62 |
# Score each page based on the presence of key phrases
|
63 |
page_scores = [0] * len(pages)
|
64 |
for i, page in enumerate(pages):
|
65 |
for phrase in key_phrases:
|
66 |
if phrase.lower() in page.page_content.lower():
|
67 |
page_scores[i] += 1
|
68 |
+
|
69 |
# Determine the top pages based on highest scores
|
70 |
top_pages_with_scores = sorted(enumerate(page_scores), key=lambda x: x[1], reverse=True)
|
71 |
top_pages = [i + 1 for i, score in top_pages_with_scores if score > 0][:2] # Get top 2 pages
|
72 |
+
|
73 |
# Generate links for each top page
|
74 |
file_name = os.path.basename(file_path)
|
75 |
page_links = [f"[Page {p}](file://{os.path.abspath(file_path)})" for p in top_pages]
|
76 |
page_links_str = ', '.join(page_links)
|
77 |
+
|
78 |
if top_pages:
|
79 |
source_str = f"Top relevant page(s): {page_links_str}"
|
80 |
else:
|
|
|
82 |
|
83 |
# Create a clickable link for the document
|
84 |
source_link = f"[Document: {file_name}](file://{os.path.abspath(file_path)})"
|
85 |
+
|
86 |
+
# Update session context with the new question and answer
|
87 |
+
session_contexts[session_id] = {
|
88 |
+
"context": full_context,
|
89 |
+
"history": full_history + f"\nQ: {question}\nA: {answer}"
|
90 |
+
}
|
91 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
return f"Answer: {answer}\n{source_str}\n{source_link}"
|
93 |
else:
|
94 |
return "Error: Unable to process the document. Please ensure the PDF file is valid."
|
|
|
98 |
input_question = gr.Textbox(label="Ask about the document")
|
99 |
output_text = gr.Textbox(label="Answer and Top Pages", lines=10, max_lines=10)
|
100 |
|
101 |
+
def get_chat_history(session_id):
|
102 |
+
if session_id in session_contexts:
|
103 |
+
return session_contexts[session_id]["history"]
|
104 |
+
else:
|
105 |
+
return "No history available for this session."
|
106 |
|
107 |
+
async def pdf_qa(file, question, session_id):
|
108 |
if file is None:
|
109 |
return "Error: No file uploaded. Please upload a PDF document."
|
110 |
|
111 |
+
answer = await initialize(file.name, question, session_id)
|
112 |
return answer
|
113 |
|
114 |
# Create Gradio Interfaces
|
115 |
qa_interface = gr.Interface(
|
116 |
+
fn=lambda file, question, session_id: asyncio.run(pdf_qa(file, question, session_id)),
|
117 |
+
inputs=[input_file, input_question, gr.Textbox(label="Session ID", placeholder="Enter a session ID to track your conversation")],
|
118 |
outputs=output_text,
|
119 |
title="PDF Question Answering System",
|
120 |
+
description="Upload a PDF file and ask questions about the content. Provide a session ID to maintain conversation context."
|
121 |
)
|
122 |
|
123 |
history_interface = gr.Interface(
|
124 |
+
fn=lambda session_id: get_chat_history(session_id),
|
125 |
+
inputs=gr.Textbox(label="Session ID", placeholder="Enter a session ID to view chat history"),
|
126 |
outputs=gr.Textbox(label="Chat History", lines=20, max_lines=20),
|
127 |
title="Chat History",
|
128 |
+
description="View the history of interactions for a specific session."
|
129 |
)
|
130 |
|
131 |
# Launch both interfaces
|
132 |
qa_interface.launch(share=True)
|
133 |
history_interface.launch(share=True)
|
134 |
|
|