import os import gradio as gr import asyncio from langchain_core.prompts import PromptTemplate from langchain_community.output_parsers.rail_parser import GuardrailsOutputParser from langchain_community.document_loaders import PyPDFLoader from langchain_google_genai import ChatGoogleGenerativeAI import google.generativeai as genai from langchain.chains.question_answering import load_qa_chain # Import load_qa_chain async def initialize(file_path, question): genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) model = genai.GenerativeModel('gemini-pro') model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3) prompt_template = """Answer the question as precise as possible using the provided context. If the answer is not contained in the context, say "answer not available in context" \n\n Context: \n {context}?\n Question: \n {question} \n Answer: """ prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) if os.path.exists(file_path): pdf_loader = PyPDFLoader(file_path) pages = pdf_loader.load_and_split() context = "\n".join(f"Page {i+1}: {page.page_content}" for i, page in enumerate(pages[:30])) stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) # Use ainvoke instead of arun stuff_answer = await stuff_chain.ainvoke({"input_documents": pages, "question": question, "context": context}) # Extract the page number where the context was found sources = [] for i, page in enumerate(pages): if question.lower() in page.page_content.lower(): sources.append(f"Page {i+1}") if sources: source_str = f" (Source: {', '.join(sources)})" else: source_str = " (Source: Not found in specific page)" # Add the clickable link to the source file_name = os.path.basename(file_path) source_link = f"[{file_name}](file://{os.path.abspath(file_path)})" return f"{stuff_answer} {source_str} - [Document: {source_link}]" else: return "Error: Unable to process the document. Please ensure the PDF file is valid." # Define Gradio Interface input_file = gr.File(label="Upload PDF File") input_question = gr.Textbox(label="Ask about the document") output_text = gr.Textbox(label="Answer - GeminiPro") async def pdf_qa(file, question): answer = await initialize(file.name, question) return answer # Create Gradio Interface with share=True to enable a public link gr.Interface(fn=pdf_qa, inputs=[input_file, input_question], outputs=output_text, title="PDF Question Answering System", description="Upload a PDF file and ask questions about the content.").launch(share=True)