import pandas as pd import numpy as np import gradio as gr # import matplotlib.pyplot as plt # %matplotlib inline import seaborn as sns from sklearn.feature_extraction.text import CountVectorizer from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import MultinomialNB from sklearn.metrics import accuracy_score,precision_score,recall_score,f1_score k=KNeighborsClassifier() d=DecisionTreeClassifier() r=RandomForestClassifier() l=LogisticRegression() mb=MultinomialNB() from sklearn.model_selection import train_test_split from wordcloud import WordCloud, STOPWORDS from PIL import Image from textblob import TextBlob import warnings warnings.filterwarnings('ignore') df=pd.read_csv("data.csv")