Spaces:
Runtime error
Runtime error
File size: 2,292 Bytes
b4563e1 3a0ccc3 b4563e1 8e08196 b4563e1 ae1742e b4563e1 ae1742e 8e08196 ae1742e 8e08196 ae1742e 8e08196 ae1742e 8e08196 ae1742e 8e08196 ae1742e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
import gradio as gr
import torch
from PIL import Image
from torchvision import transforms
import warnings
import sys
import os
import contextlib
from transformers import ViTForImageClassification
# Suppress warnings related to the model weights initialization, FutureWarning and UserWarnings
warnings.filterwarnings("ignore", category=UserWarning, module="transformers")
warnings.filterwarnings("ignore", category=FutureWarning, module="torch")
# Suppress output for copying files and verbose model initialization messages
@contextlib.contextmanager
def suppress_stdout():
with open(os.devnull, 'w') as devnull:
old_stdout = sys.stdout
sys.stdout = devnull
try:
yield
finally:
sys.stdout = old_stdout
# Load the saved model and suppress the warnings
with suppress_stdout():
model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224-in21k', num_labels=6)
model.load_state_dict(torch.load('vit_sugarcane_disease_detection.pth', map_location=torch.device('cpu')))
model.eval()
# Define the same transformation used during training
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# Load the class names (disease types)
class_names = ['BacterialBlights', 'Healthy', 'Mosaic', 'RedRot', 'Rust', 'Yellow']
# Function to predict disease type from an image
def predict_disease(image):
# Apply transformations to the image
img_tensor = transform(image).unsqueeze(0) # Add batch dimension
# Make prediction
with torch.no_grad():
outputs = model(img_tensor)
_, predicted_class = torch.max(outputs.logits, 1)
# Get the predicted label
predicted_label = class_names[predicted_class.item()]
return predicted_label
# Create Gradio interface
inputs = gr.Image(type="pil")
outputs = gr.Text()
EXAMPLES = ["img1.png", "img2.png", "img3.png", "img4.png"]
demo_app = gr.Interface(
fn=predict_disease,
inputs=inputs,
outputs=outputs,
title="Sugarcane Disease Detection",
examples=EXAMPLES,
cache_example=True,
live=True,
theme="huggingface"
)
demo_app.launch(debug=True, enable_queue=True)
|