saritha's picture
Update app.py
755a244 verified
raw
history blame
3.57 kB
import gradio as gr
import torch
from PIL import Image
from torchvision import transforms
import warnings
import sys
import os
import contextlib
from transformers import ViTForImageClassification, pipeline
# Suppress warnings related to the model weights initialization
warnings.filterwarnings("ignore", category=UserWarning, message=".*weights.*")
warnings.filterwarnings("ignore", category=FutureWarning, module="torch")
# Suppress output for copying files and verbose model initialization messages
@contextlib.contextmanager
def suppress_stdout():
with open(os.devnull, 'w') as devnull:
old_stdout = sys.stdout
sys.stdout = devnull
try:
yield
finally:
sys.stdout = old_stdout
# Load the saved model and suppress the warnings
with suppress_stdout():
model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224-in21k', num_labels=6)
model.load_state_dict(torch.load('vit_sugarcane_disease_detection.pth', map_location=torch.device('cpu')))
model.eval()
# Define the same transformation used during training
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# Load the class names (disease types)
class_names = ['BacterialBlights', 'Healthy', 'Mosaic', 'RedRot', 'Rust', 'Yellow']
# Load AI response generator (using a local GPT pipeline or OpenAI's GPT-3/4 API)
ai_pipeline = pipeline("text-generation", model="gpt2", tokenizer="gpt2")
# Function to predict disease type from an image
def predict_disease(image):
# Apply transformations to the image
img_tensor = transform(image).unsqueeze(0) # Add batch dimension
# Make prediction
with torch.no_grad():
outputs = model(img_tensor)
_, predicted_class = torch.max(outputs.logits, 1)
# Get the predicted label
predicted_label = class_names[predicted_class.item()]
# Generate a detailed response for the detected disease
prompt = f"The detected sugarcane disease is '{predicted_label}'. Provide detailed advice for managing this condition."
ai_response = ai_pipeline(prompt, max_length=100, num_return_sequences=1, truncation=True)[0]['generated_text']
# Post-process the AI response to ensure it ends with a complete sentence
if not ai_response.endswith(('.', '!', '?')):
ai_response = ai_response.rsplit('.', 1)[0] + '.'
# Create a styled HTML output
output_message = f"""
<div style='font-size: 18px; color: #4CAF50; font-weight: bold;'>
Detected Disease: <span style='color: #FF5722;'>{predicted_label}</span>
</div>
"""
if predicted_label != "Healthy":
output_message += f"""
<p style='font-size: 16px; color: #757575;'>
{ai_response}
</p>
"""
else:
output_message += f"""
<p style='font-size: 16px; color: #757575;'>
The sugarcane crop is <strong>healthy</strong>. Keep monitoring for potential risks.
</p>
"""
return output_message
# Create Gradio interface
inputs = gr.Image(type="pil")
outputs = gr.HTML() # Use HTML output for styled text
EXAMPLES = ["img1.jpeg", "redrot2.jpg", "rust1.jpg", "healthy2.jpeg"]
demo_app = gr.Interface(
fn=predict_disease,
inputs=inputs,
outputs=outputs,
title="Sugarcane Disease Detection",
examples=EXAMPLES,
live=True,
theme="huggingface"
)
demo_app.launch(debug=True)
demo_app.launch(debug=True)