saritha's picture
Update app.py
d521450 verified
raw
history blame
4.4 kB
import gradio as gr
import torch
from PIL import Image
from torchvision import transforms
import warnings
import sys
import os
import contextlib
from transformers import ViTForImageClassification, pipeline
# Suppress warnings related to the model weights initialization
warnings.filterwarnings("ignore", category=UserWarning, message=".*weights.*")
warnings.filterwarnings("ignore", category=FutureWarning, module="torch")
# Suppress output for copying files and verbose model initialization messages
@contextlib.contextmanager
def suppress_stdout():
with open(os.devnull, 'w') as devnull:
old_stdout = sys.stdout
sys.stdout = devnull
try:
yield
finally:
sys.stdout = old_stdout
# Load the saved model and suppress the warnings
with suppress_stdout():
model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224-in21k', num_labels=6)
model.load_state_dict(torch.load('vit_sugarcane_disease_detection.pth', map_location=torch.device('cpu')))
model.eval()
# Define the same transformation used during training
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# Load the class names (disease types)
class_names = ['BacterialBlights', 'Healthy', 'Mosaic', 'RedRot', 'Rust', 'Yellow']
# Load AI response generator (using a local GPT pipeline or OpenAI's GPT-3/4 API)
ai_pipeline = pipeline("text-generation", model="gpt2", tokenizer="gpt2")
# Knowledge base for sugarcane diseases (example data from the website)
knowledge_base = {
'BacterialBlights': "Bacterial blights cause water-soaked lesions on leaves, leading to yellowing and withering. To manage, apply copper-based fungicides and ensure proper drainage.",
'Mosaic': "Mosaic disease results in streaked and mottled leaves, reducing photosynthesis. Use disease-resistant varieties and control aphids to prevent spread.",
'RedRot': "Red rot is identified by reddening and rotting of stalks. Remove infected plants and treat soil with appropriate fungicides.",
'Rust': "Rust appears as orange pustules on leaves. Apply systemic fungicides and maintain optimal field conditions to reduce spread.",
'Yellow': "Yellowing indicates nutrient deficiencies or initial disease stages. Test soil and provide balanced fertilizers.",
'Healthy': "The sugarcane crop is healthy. Continue regular monitoring and good agronomic practices."
}
# Update the predict_disease function
def predict_disease(image):
# Apply transformations to the image
img_tensor = transform(image).unsqueeze(0) # Add batch dimension
# Make prediction
with torch.no_grad():
outputs = model(img_tensor)
_, predicted_class = torch.max(outputs.logits, 1)
# Get the predicted label
predicted_label = class_names[predicted_class.item()]
# Retrieve response from knowledge base
if predicted_label in knowledge_base:
detailed_response = knowledge_base[predicted_label]
else:
# Fallback to AI-generated response
prompt = f"The detected sugarcane disease is '{predicted_label}'. Provide detailed advice for managing this condition."
detailed_response = ai_pipeline(prompt, max_length=100, num_return_sequences=1, truncation=True)[0]['generated_text']
# Create a styled HTML output
output_message = f"""
<div style='font-size: 18px; color: #4CAF50; font-weight: bold;'>
Detected Disease: <span style='color: #FF5722;'>{predicted_label}</span>
</div>
"""
if predicted_label != "Healthy":
output_message += f"""
<p style='font-size: 16px; color: #757575;'>
{detailed_response}
</p>
"""
else:
output_message += f"""
<p style='font-size: 16px; color: #757575;'>
{detailed_response}
</p>
"""
return output_message
# Create Gradio interface
inputs = gr.Image(type="pil")
outputs = gr.HTML() # Use HTML output for styled text
EXAMPLES = ["img1.jpeg", "redrot2.jpg", "rust1.jpg", "healthy2.jpeg"]
demo_app = gr.Interface(
fn=predict_disease,
inputs=inputs,
outputs=outputs,
title="Sugarcane Disease Detection",
examples=EXAMPLES,
live=True,
theme="huggingface"
)
demo_app.launch(debug=True)