Spaces:
Running
on
Zero
Running
on
Zero
Upload 2 files
Browse files- app.py +69 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import torchaudio
|
5 |
+
import transformers
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
+
|
8 |
+
fe_path = hf_hub_download("sarulab-speech/sidon-v0.1", filename="feature_extractor.pt")
|
9 |
+
decoder_path = hf_hub_download("sarulab-speech/sidon-v0.1", filename="decoder.pt")
|
10 |
+
|
11 |
+
fe = torch.jit.load(fe_path)
|
12 |
+
decoder = torch.jit.load(decoder_path)
|
13 |
+
preprocessor = transformers.SeamlessM4TFeatureExtractor.from_pretrained(
|
14 |
+
"facebook/w2v-bert-2.0"
|
15 |
+
)
|
16 |
+
|
17 |
+
|
18 |
+
def denoise_speech(audio):
|
19 |
+
if audio is None:
|
20 |
+
return None
|
21 |
+
|
22 |
+
sample_rate, waveform = audio
|
23 |
+
waveform = 0.9 * (waveform / np.abs(waveform).max())
|
24 |
+
|
25 |
+
# Ensure waveform is a tensor
|
26 |
+
if not isinstance(waveform, torch.Tensor):
|
27 |
+
waveform = torch.tensor(waveform, dtype=torch.float32)
|
28 |
+
|
29 |
+
# If stereo, convert to mono
|
30 |
+
if waveform.ndim > 1 and waveform.shape[0] > 1:
|
31 |
+
waveform = torch.mean(waveform, dim=0)
|
32 |
+
|
33 |
+
# Add a batch dimension
|
34 |
+
waveform = waveform.view(1, -1)
|
35 |
+
wav = torchaudio.functional.highpass_biquad(waveform, sample_rate, 50)
|
36 |
+
wav_16k = torchaudio.functional.resample(wav, sample_rate, 16_000)
|
37 |
+
restoreds = []
|
38 |
+
feature_cache = None
|
39 |
+
for chunk in wav_16k.view(-1).split(16000 * 20):
|
40 |
+
inputs = preprocessor(
|
41 |
+
torch.nn.functional.pad(chunk, (40, 40)), return_tensors="pt"
|
42 |
+
)
|
43 |
+
with torch.inference_mode():
|
44 |
+
feature = fe(inputs["input_features"])["last_hidden_state"]
|
45 |
+
if feature_cache is not None:
|
46 |
+
feature = torch.cat([feature_cache, feature], dim=1)
|
47 |
+
restored_wav = decoder(feature.transpose(1, 2))
|
48 |
+
restored_wav = restored_wav[:, :, 4800:]
|
49 |
+
else:
|
50 |
+
restored_wav = decoder(feature.transpose(1, 2))
|
51 |
+
restored_wav = restored_wav[:, :, 50 * 3 :]
|
52 |
+
feature_cache = feature[:, -5:, :]
|
53 |
+
restoreds.append(restored_wav)
|
54 |
+
restored_wav = torch.cat(restoreds, dim=-1)
|
55 |
+
|
56 |
+
return 48_000, (restored_wav.view(-1, 1).numpy() * 32767).astype(np.int16)
|
57 |
+
|
58 |
+
|
59 |
+
# Create the Gradio interface
|
60 |
+
iface = gr.Interface(
|
61 |
+
fn=denoise_speech,
|
62 |
+
inputs=gr.Audio(type="numpy", label="Noisy Speech"),
|
63 |
+
outputs=gr.Audio(type="numpy", label="Restored Speech"),
|
64 |
+
title="Sidon Speech Restoration",
|
65 |
+
description="Upload a noisy audio file and the Sidon model will restore it.",
|
66 |
+
)
|
67 |
+
|
68 |
+
if __name__ == "__main__":
|
69 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchaudio
|
3 |
+
pydantic==2.10.6
|
4 |
+
transformers
|
5 |
+
gradio
|