Wataru commited on
Commit
ccb6f22
·
verified ·
1 Parent(s): 3a2e45b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -4
app.py CHANGED
@@ -3,18 +3,20 @@ import numpy as np
3
  import torch
4
  import torchaudio
5
  import transformers
 
6
  from huggingface_hub import hf_hub_download
7
 
8
  fe_path = hf_hub_download("sarulab-speech/sidon-v0.1", filename="feature_extractor.pt")
9
  decoder_path = hf_hub_download("sarulab-speech/sidon-v0.1", filename="decoder.pt")
10
 
11
- fe = torch.jit.load(fe_path)
12
- decoder = torch.jit.load(decoder_path)
13
  preprocessor = transformers.SeamlessM4TFeatureExtractor.from_pretrained(
14
  "facebook/w2v-bert-2.0"
15
  )
16
 
17
 
 
18
  def denoise_speech(audio):
19
  if audio is None:
20
  return None
@@ -39,7 +41,7 @@ def denoise_speech(audio):
39
  for chunk in wav_16k.view(-1).split(16000 * 20):
40
  inputs = preprocessor(
41
  torch.nn.functional.pad(chunk, (40, 40)), return_tensors="pt"
42
- )
43
  with torch.inference_mode():
44
  feature = fe(inputs["input_features"])["last_hidden_state"]
45
  if feature_cache is not None:
@@ -50,7 +52,7 @@ def denoise_speech(audio):
50
  restored_wav = decoder(feature.transpose(1, 2))
51
  restored_wav = restored_wav[:, :, 50 * 3 :]
52
  feature_cache = feature[:, -5:, :]
53
- restoreds.append(restored_wav)
54
  restored_wav = torch.cat(restoreds, dim=-1)
55
 
56
  return 48_000, (restored_wav.view(-1, 1).numpy() * 32767).astype(np.int16)
 
3
  import torch
4
  import torchaudio
5
  import transformers
6
+ import spaces
7
  from huggingface_hub import hf_hub_download
8
 
9
  fe_path = hf_hub_download("sarulab-speech/sidon-v0.1", filename="feature_extractor.pt")
10
  decoder_path = hf_hub_download("sarulab-speech/sidon-v0.1", filename="decoder.pt")
11
 
12
+ fe = torch.jit.load(fe_path).to('cuda')
13
+ decoder = torch.jit.load(decoder_path).to('cuda')
14
  preprocessor = transformers.SeamlessM4TFeatureExtractor.from_pretrained(
15
  "facebook/w2v-bert-2.0"
16
  )
17
 
18
 
19
+ @spaces.GPU
20
  def denoise_speech(audio):
21
  if audio is None:
22
  return None
 
41
  for chunk in wav_16k.view(-1).split(16000 * 20):
42
  inputs = preprocessor(
43
  torch.nn.functional.pad(chunk, (40, 40)), return_tensors="pt"
44
+ ).to('cuda')
45
  with torch.inference_mode():
46
  feature = fe(inputs["input_features"])["last_hidden_state"]
47
  if feature_cache is not None:
 
52
  restored_wav = decoder(feature.transpose(1, 2))
53
  restored_wav = restored_wav[:, :, 50 * 3 :]
54
  feature_cache = feature[:, -5:, :]
55
+ restoreds.append(restored_wav.cpu())
56
  restored_wav = torch.cat(restoreds, dim=-1)
57
 
58
  return 48_000, (restored_wav.view(-1, 1).numpy() * 32767).astype(np.int16)