Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -3,18 +3,20 @@ import numpy as np
|
|
3 |
import torch
|
4 |
import torchaudio
|
5 |
import transformers
|
|
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
|
8 |
fe_path = hf_hub_download("sarulab-speech/sidon-v0.1", filename="feature_extractor.pt")
|
9 |
decoder_path = hf_hub_download("sarulab-speech/sidon-v0.1", filename="decoder.pt")
|
10 |
|
11 |
-
fe = torch.jit.load(fe_path)
|
12 |
-
decoder = torch.jit.load(decoder_path)
|
13 |
preprocessor = transformers.SeamlessM4TFeatureExtractor.from_pretrained(
|
14 |
"facebook/w2v-bert-2.0"
|
15 |
)
|
16 |
|
17 |
|
|
|
18 |
def denoise_speech(audio):
|
19 |
if audio is None:
|
20 |
return None
|
@@ -39,7 +41,7 @@ def denoise_speech(audio):
|
|
39 |
for chunk in wav_16k.view(-1).split(16000 * 20):
|
40 |
inputs = preprocessor(
|
41 |
torch.nn.functional.pad(chunk, (40, 40)), return_tensors="pt"
|
42 |
-
)
|
43 |
with torch.inference_mode():
|
44 |
feature = fe(inputs["input_features"])["last_hidden_state"]
|
45 |
if feature_cache is not None:
|
@@ -50,7 +52,7 @@ def denoise_speech(audio):
|
|
50 |
restored_wav = decoder(feature.transpose(1, 2))
|
51 |
restored_wav = restored_wav[:, :, 50 * 3 :]
|
52 |
feature_cache = feature[:, -5:, :]
|
53 |
-
restoreds.append(restored_wav)
|
54 |
restored_wav = torch.cat(restoreds, dim=-1)
|
55 |
|
56 |
return 48_000, (restored_wav.view(-1, 1).numpy() * 32767).astype(np.int16)
|
|
|
3 |
import torch
|
4 |
import torchaudio
|
5 |
import transformers
|
6 |
+
import spaces
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
|
9 |
fe_path = hf_hub_download("sarulab-speech/sidon-v0.1", filename="feature_extractor.pt")
|
10 |
decoder_path = hf_hub_download("sarulab-speech/sidon-v0.1", filename="decoder.pt")
|
11 |
|
12 |
+
fe = torch.jit.load(fe_path).to('cuda')
|
13 |
+
decoder = torch.jit.load(decoder_path).to('cuda')
|
14 |
preprocessor = transformers.SeamlessM4TFeatureExtractor.from_pretrained(
|
15 |
"facebook/w2v-bert-2.0"
|
16 |
)
|
17 |
|
18 |
|
19 |
+
@spaces.GPU
|
20 |
def denoise_speech(audio):
|
21 |
if audio is None:
|
22 |
return None
|
|
|
41 |
for chunk in wav_16k.view(-1).split(16000 * 20):
|
42 |
inputs = preprocessor(
|
43 |
torch.nn.functional.pad(chunk, (40, 40)), return_tensors="pt"
|
44 |
+
).to('cuda')
|
45 |
with torch.inference_mode():
|
46 |
feature = fe(inputs["input_features"])["last_hidden_state"]
|
47 |
if feature_cache is not None:
|
|
|
52 |
restored_wav = decoder(feature.transpose(1, 2))
|
53 |
restored_wav = restored_wav[:, :, 50 * 3 :]
|
54 |
feature_cache = feature[:, -5:, :]
|
55 |
+
restoreds.append(restored_wav.cpu())
|
56 |
restored_wav = torch.cat(restoreds, dim=-1)
|
57 |
|
58 |
return 48_000, (restored_wav.view(-1, 1).numpy() * 32767).astype(np.int16)
|