File size: 13,425 Bytes
617df14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import asyncio
import logging
import os
import re

import gradio as gr
import numpy as np
from cleantext import clean
from dotenv import load_dotenv
from fastrtc import (
    AdditionalOutputs,
    AlgoOptions,
    ReplyOnPause,
    SileroVadOptions,
    Stream,
    audio_to_bytes,
    get_stt_model,
    get_tts_model,
)
from llama_index.core.workflow import Context
from num2words import num2words
from openai import OpenAI
from scipy import signal
from transformers.models.auto.modeling_auto import AutoModelForSpeechSeq2Seq
from transformers.models.auto.processing_auto import AutoProcessor
from transformers.pipelines import pipeline
from transformers.utils.import_utils import is_flash_attn_2_available

from chatbot import agent, get_chat_history, update_chat_history
from transcription import resample_audio, warmup_model
from utils.device import get_device, get_torch_and_np_dtypes

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s - %(levelname)s - %(message)s",
    datefmt="%Y-%m-%d %H:%M:%S",
)
logger = logging.getLogger(__name__)

device = get_device(force_cpu=False)
torch_dtype, np_dtype = get_torch_and_np_dtypes(device, use_bfloat16=False)
logger.info(f"Using device: {device}, torch_dtype: {torch_dtype}, np_dtype: {np_dtype}")

attention = "flash_attention_2" if is_flash_attn_2_available() else "sdpa"
logger.info(f"Using attention: {attention}")

stt_model_name = "openai/whisper-large-v2"

try:
    model = AutoModelForSpeechSeq2Seq.from_pretrained(
        stt_model_name,
        torch_dtype=torch_dtype,
        low_cpu_mem_usage=True,
        use_safetensors=True,
        attn_implementation=attention,
    )
    model.to(device)
except Exception as e:
    logger.error(f"Error loading ASR model: {e}")
    logger.error(f"Are you providing a valid model ID? {stt_model_name}")
    raise

processor = AutoProcessor.from_pretrained(stt_model_name)

# Create a custom prompt to guide the model
initial_prompt = "LuxDev, Sasan, Jafarnejad, LUXDEV"
prompt_ids = processor.get_prompt_ids(initial_prompt, return_tensors="pt").to(device)

# warmup_model(processor, model, device, np_dtype, torch_dtype, logger)

# Load environment variables from .env file
load_dotenv()
logger.info("Environment variables loaded")

sambanova_client = OpenAI(
    api_key=os.getenv("OPENAI_API_KEY"),
)
logger.info("OpenAI client initialized")

tts_model = get_tts_model()
logger.info("STT and TTS models initialized")

# Create context - moved before the listen function
ctx = Context(agent)


async def listen(audio: tuple[int, np.ndarray]):
    sample_rate, audio_array = audio
    logger.info(f"Sample rate: {sample_rate}Hz, Shape: {audio_array.shape}")

    # Resample audio to 16kHz if needed
    audio_array, sample_rate = resample_audio(audio_array, sample_rate)

    # Process audio input
    input_features = processor(
        audio_array, sampling_rate=sample_rate, return_tensors="pt"
    ).input_features
    input_features = input_features.to(
        device=device, dtype=torch_dtype
    )  # Convert to correct dtype

    # Generate transcription
    predicted_ids = model.generate(
        input_features,
        # task="transcribe",
        # language="english",
        max_length=448,
        num_beams=5,
        temperature=0.0,
        no_repeat_ngram_size=3,
        length_penalty=1.0,
        repetition_penalty=1.0,
        # Use the prompt tokens directly
        prompt_ids=prompt_ids,
    )

    # Decode the transcription
    transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[
        0
    ].strip()
    logger.info(f"Transcript: {transcription}")

    # Check if transcription is empty or too short
    if not transcription or len(transcription.strip()) < 2:
        logger.info("Empty or too short transcription, skipping processing")
        return

    logger.info("Sending request to OpenAI")
    try:
        full_response = await agent.run(
            transcription,
            ctx=ctx,
        )

        response = full_response.response.content

        # Update chat history
        update_chat_history(transcription, response)

        logger.info(f"OpenAI response: {response}")

        if response is None or not response.strip():
            logger.warning("Received empty response from OpenAI")
            return

        # Preprocess the text for TTS
        tts_text = preprocess_text_for_tts(response)
        logger.info(f"Preprocessed text for TTS: {tts_text}")

        # Check if preprocessed text is empty
        if not tts_text or not tts_text.strip():
            logger.warning("Preprocessed TTS text is empty")
            return

        logger.info("Starting TTS streaming")
        try:
            chunk_count = 0
            async for audio_chunk in tts_model.stream_tts(tts_text):
                chunk_count += 1
                # Add a small delay to prevent overwhelming the connection
                if chunk_count % 10 == 0:
                    await asyncio.sleep(0.01)
                yield audio_chunk, AdditionalOutputs(transcription, response)
            logger.info(f"TTS streaming completed with {chunk_count} chunks")
        except Exception as e:
            logger.error(f"TTS streaming error: {e}")
            # Return empty audio chunk if TTS fails
            yield (16000, np.array([], dtype=np.float32)), AdditionalOutputs(
                transcription, f"Error in text-to-speech: {str(e)}"
            )

    except Exception as e:
        logger.error(f"Error in agent processing: {e}")
        yield (16000, np.array([], dtype=np.float32)), AdditionalOutputs(
            transcription, f"Error processing request: {str(e)}"
        )


def preprocess_text_for_tts(text):
    """
    Preprocess text to make it more suitable for TTS using specialized libraries.
    """
    # Remove markdown formatting with more robust patterns

    # First, handle the most common cases with a more reliable approach
    # Remove ** when they appear in pairs (bold text) - handle nested cases
    while "**" in text:
        # Find pairs of ** and remove them
        start = text.find("**")
        if start == -1:
            break
        end = text.find("**", start + 2)
        if end == -1:
            break
        # Extract the content between ** and replace the whole pattern
        content = text[start + 2 : end]
        text = text[:start] + content + text[end + 2 :]

    # Remove * when they appear in pairs (italic text) - but be careful not to remove single *
    # We need to be more careful here to avoid removing legitimate asterisks
    # Only remove * if it's clearly markdown formatting
    while "*" in text:
        start = text.find("*")
        if start == -1:
            break
        # Look for the next * that's not part of **
        end = text.find("*", start + 1)
        if end == -1:
            break
        # Check if this is part of a ** pattern (already handled above)
        if start > 0 and text[start - 1] == "*":
            break
        if end + 1 < len(text) and text[end + 1] == "*":
            break
        # Extract the content between * and replace the whole pattern
        content = text[start + 1 : end]
        text = text[:start] + content + text[end + 1 :]

    # Remove __ when they appear in pairs (bold text)
    while "__" in text:
        start = text.find("__")
        if start == -1:
            break
        end = text.find("__", start + 2)
        if end == -1:
            break
        content = text[start + 2 : end]
        text = text[:start] + content + text[end + 2 :]

    # Remove _ when they appear in pairs (italic text) - but be careful
    while "_" in text:
        start = text.find("_")
        if start == -1:
            break
        end = text.find("_", start + 1)
        if end == -1:
            break
        # Check if this is part of a __ pattern (already handled above)
        if start > 0 and text[start - 1] == "_":
            break
        if end + 1 < len(text) and text[end + 1] == "_":
            break
        content = text[start + 1 : end]
        text = text[:start] + content + text[end + 1 :]

    # Remove ` when they appear in pairs (inline code)
    while "`" in text:
        start = text.find("`")
        if start == -1:
            break
        end = text.find("`", start + 1)
        if end == -1:
            break
        content = text[start + 1 : end]
        text = text[:start] + content + text[end + 1 :]

    # Remove # at the beginning of lines (headers)
    lines = text.split("\n")
    cleaned_lines = []
    for line in lines:
        # Remove leading # characters
        cleaned_line = line.lstrip("#").lstrip()
        cleaned_lines.append(cleaned_line)
    text = "\n".join(cleaned_lines)

    # Remove markdown links [text](url) -> text
    while "[" in text and "](" in text:
        start_bracket = text.find("[")
        if start_bracket == -1:
            break
        end_bracket = text.find("]", start_bracket)
        if end_bracket == -1:
            break
        start_paren = text.find("(", end_bracket)
        if start_paren == -1:
            break
        end_paren = text.find(")", start_paren)
        if end_paren == -1:
            break
        # Extract the link text
        link_text = text[start_bracket + 1 : end_bracket]
        # Replace the entire [text](url) with just the text
        text = text[:start_bracket] + link_text + text[end_paren + 1 :]

    # Clean the text
    text = clean(
        text,
        fix_unicode=True,
        to_ascii=True,
        lower=False,
        no_line_breaks=False,
        no_urls=True,
        no_emails=True,
        no_phone_numbers=True,
        no_numbers=False,
        no_digits=False,
        no_currency_symbols=True,
        no_punct=False,
        replace_with_punct="",
        replace_with_url="",
        replace_with_email="",
        replace_with_phone_number="",
        replace_with_number="",
        replace_with_digit="",
        replace_with_currency_symbol="",
    )

    # Convert numbers to words
    def replace_numbers(match):
        try:
            return num2words(float(match.group()), lang="en")
        except:
            return match.group()

    text = re.sub(r"\b\d+(?:\.\d+)?\b", replace_numbers, text)

    logger.debug(f"Preprocessed text: {text}")
    return text.strip()


logger.info("Initializing Stream with ReplyOnPause")
# stream = Stream(ReplyOnPause(echo), modality="audio", mode="send-receive")
logger.info("Initializing FastRTC stream")
stream = Stream(
    handler=ReplyOnPause(
        listen,
        algo_options=AlgoOptions(
            # Duration in seconds of audio chunks (default 0.6)
            audio_chunk_duration=0.8,
            # If the chunk has more than started_talking_threshold seconds of speech, the user started talking (default 0.2)
            started_talking_threshold=0.3,
            # If, after the user started speaking, there is a chunk with less than speech_threshold seconds of speech, the user stopped speaking. (default 0.1)
            speech_threshold=0.8,
        ),
        model_options=SileroVadOptions(
            # Threshold for what is considered speech (default 0.5)
            threshold=0.6,
            # Final speech chunks shorter min_speech_duration_ms are thrown out (default 250)
            min_speech_duration_ms=500,
            # # Max duration of speech chunks, longer will be split (default float('inf'))
            max_speech_duration_s=30,
            # Wait for ms at the end of each speech chunk before separating it (default 2000)
            min_silence_duration_ms=1500,
            # # Chunk size for VAD model. Can be 512, 1024, 1536 for 16k s.r. (default 1024)
            window_size_samples=1024,
            # # Final speech chunks are padded by speech_pad_ms each side (default 400)
            speech_pad_ms=300,
        ),
    ),
    # send-receive: bidirectional streaming (default)
    # send: client to server only
    # receive: server to client only
    modality="audio",
    mode="send-receive",
    concurrency_limit=1,  # Limit to one connection at a time
    additional_outputs=[
        gr.Textbox(label="Transcript"),
        gr.Textbox(label="Chatbot Response"),
    ],
    additional_outputs_handler=lambda current_transcript, current_response, new_transcript, new_response: (
        (
            (current_transcript + " " + new_transcript)
            if current_transcript
            else new_transcript
        ),
        new_response,  # Replace chatbot response with the latest one
    ),
    # rtc_configuration=get_rtc_credentials(provider="hf") if APP_MODE == "deployed" else None
    ui_args={
        "title": "Oracle Voice Chatbot",
        "subtitle": "Ask me anything",
    },
)

# Create custom Blocks with CSS and title
custom_css = """
.footer {
    display: none !important;
}
.gradio-container::after {
    content: "Made in Luxembourg 🇱🇺";
    display: block;
    text-align: center;
    padding: 10px;
    color: #666;
    font-size: 12px;
    border-top: 1px solid #e0e0e0;
    margin-top: 20px;
}
"""

# Set custom CSS and title on the existing UI
stream.ui.css = custom_css
stream.ui.title = "Oracle Voice Chatbot"

logger.info("Launching UI")
stream.ui.launch(
    app_kwargs={
        "title": "Oracle Voice Chatbot",
        "docs_url": None,
        "redoc_url": None,
    }
)